mathsux

Circle Theorems Cheat Sheet

Angle formed by Two Intersecting Chords $=\frac{1}{2}$ the sum of Intercepted Arcs

$$
\begin{gathered}
\Varangle B E A=\frac{1}{2}(\widehat{A B}+\widehat{C D}) \\
\Varangle B E A=\frac{1}{2}\left(50^{\circ}+120^{\circ}\right) \\
\Varangle B E A=\frac{1}{2}\left(170^{\circ}\right) \\
\Varangle B E A=85^{\circ}
\end{gathered}
$$

Angle formed by Two Tangents $=\frac{1}{2}$ the difference of Intercepted Arc

$$
\begin{gathered}
\Varangle B A C=\frac{1}{2}(B \widehat{D} C-\widehat{B C}) \\
\Varangle B A C=\frac{1}{2}\left(240^{\circ}-120^{\circ}\right) \\
\Varangle B A C=\frac{1}{2}\left(120^{\circ}\right) \\
\Varangle B A C=60^{\circ}
\end{gathered}
$$

Angle formed by Two Secants $=\frac{1}{2}$ the difference of Intercepted Arc

$$
\begin{gathered}
\Varangle A C D=\frac{1}{2}(\widehat{A D}-\widehat{B E}) \\
\Varangle A C D=\frac{1}{2}\left(120^{\circ}-30^{\circ}\right) \\
\Varangle A C D=\frac{1}{2}\left(90^{\circ}\right) \\
\Varangle A C D=45^{\circ}
\end{gathered}
$$

Angle formed by a Secant and Tangent $=\frac{1}{2}$ the difference of Intercepted Arc

$$
\begin{gathered}
\Varangle A C D=\frac{1}{2}(\widehat{A D}-\widehat{B D}) \\
\Varangle A C D=\frac{1}{2}\left(180^{\circ}-70^{\circ}\right) \\
\Varangle A C D=\frac{1}{2}\left(110^{\circ}\right) \\
\Varangle A C D=55^{\circ}
\end{gathered}
$$

Circle Theorems:

In a circle when a tangent and radius come to touch, they form a 90° angle.
$\Varangle A C B=90^{\circ}$ and $\Varangle A C D=90^{\circ}$

In a circle when an angle is inscribed by a semicircle, it forms a 90° angle.

$\Varangle A \cong \Varangle B$

When a quadrilateral is inscribed in a circle, opposite angles are supplementary.
$\Varangle A+\Varangle C=180^{\circ}$ and $\Varangle B+\Varangle D=180^{\circ}$

In a circle when central angles are congruent, arcs are also congruent. (and vice versa)
$\Varangle C O D \cong \Varangle A O B$ Therefore, $\widehat{A B} \cong \widehat{C D}$

$\Varangle C O D \cong \Varangle A O B$ Therefore, $\widehat{A B} \cong \widehat{C D}$

