Sequences

Recognizing Patterns:

Can you find the particular pattern to each of the sequences below? See if you can guess the number that comes next for each set of numbers below!

a) 1, 1, 1, 1, 1, ?
b) 1, 2, 3, 4, 5, ?
c) 2, 4, 6, 8, 10, ?
d) 5, 10, 15, 20, ?

Easy to recognize what comes next, right? But how did you know? What pattern did each example make? That’s what we’ll be talking about in this post, sequences!

What is a Sequence?

Let’s start with a formal definition. A sequence is a list of numbers or objects that are in a particular order and form a pattern. Each example above is a different type of sequence that follows a specific pattern! That’s why we were able to easily find the successive term of each sequence (solution to each example below).

The above examples of sequences are just a snippet of what a sequence can look like, but there are so many sequences that exist! There is even a website that compiles every sequence in the world possible, called The On-Line Encyclopedia of Integer Sequences (OEIS), it’s like a kind of dictionary but for sequences! They also accept new sequences to their website. After reading this post, see if you can come up with your own sequence to add to their encyclopedia!

Types of Sequences:

There are so many different types of sequences! Sequences can take so many different forms, they can be infinite sequence where they can go on forever, or they can be finite sequence where they have an end. A sequence can be based on addition, subtraction, multiplication, division, or even based on the value of the previous term! Let’s take a look at each type of sequence one step at a time with an example for each:

Types of Sequences


Arithmetic Sequence
Geometric Sequence
Recursive Sequence

Finite Sequences


Finite Arithmetic Series
Finite Geometric Series

Infinite Sequences

Infinite Geometric Series

Special Sequences

Fibonacci Sequence
Summing Every number from 1 to 100

Arithmetic Sequence:

Arithmetic sequences are a sequence of numbers that form a pattern when the same number is either added or subtracted to each successive term. Take a look at the example of the of the arithmetic sequence below. Notice we are adding 2 to each term in the sequence 4, 6, 8, 10, … below. The number we add to each term in this sequence (in this case 2), is called the common difference. If we were to find the next term in the example of the sequence below, the next term of the sequence would be 12 (10+2=12).

sequences

Sometimes, we are asked to find not just the next term, but a term further down the line in the sequence. For example, what if we were asked to find the value of the 123rd term? That’s where the arithmetic sequence formula would come in! Check out the explicit formula below:

an=a1+(n-1)d

a1=First Term
n=Term Number in Sequence
d=Common Difference (Number Added/Subtracted to each Term in Sequence)

Now, to find the 123rd term of the above sequence, we would plug in the following values into our formula to solve. Notice the common difference here is still 2, because it is the number we are adding to all the terms in our sequence.

sequences
sequences

Notice the above arithmetic sequence is a an example of an infinite sequence! This means that we can continue finding terms for this sequence forever!

Want another example? For more examples and a step-by-step video on arithmetic sequences, check out the resources here and below:

Geometric Sequence:

Geometric sequences are a sequence of numbers that form a pattern when the same number is either multiplied or divided to each subsequent term. Take a look at the example of a geometric sequence 4, 8, 16, 32, … below. Notice we are multiplying 2 to each term in the sequence below. The number that is multiplied to each term in the sequence is called the common ratio, which in the case of the geometric sequence below is 2. If the pattern were to continue, the next term of the sequence above would be 64, since 32 x 2=64.

sequences

Sometimes, we are asked to find not just the next term, but a term far down the line in the sequence, for example, what if we were asked to find the value of the 15th term? That’s where the geometric sequence formula would come in!

an=a1r(n-1)

a1 = First Term
r=Common Ratio (Number Multiplied/Divided to each Term in Sequence)
n= Term Number in Sequence

To find the 15th term of the above sequence, we would need to plug in the following values into our formula to solve:

sequences
sequences

Notice the above geometric sequence is a type of infinite sequence! This means that we can continue finding terms for this sequence, forever!

Want another example? For more examples and a step-by-step video on geometric sequences, check out the resources here and below:

Recursive Sequences:

A Recursive Formula is a type of formula that forms a sequence based on the previous term value. These can be based on arithmetic sequences or a geometric sequences, the sequence type does not really matter, as long as each successive term is based on the previous term. What does that mean? Check out the example below for a clearer picture:

What are the first 5 terms of a recursive sequence given the following recursive formula:

First, let’s decode what this says:

sequences

Now, let’s see our formula in action! Notice below, we start with the first term, a1=2. Then we use 2 to plug into our formula for the second term to get 2+4=6, and we continue the pattern all the way through for the first five terms, to get our answer.

sequences

Recursive Sequence: Now that have used our recursive formula, notice it gave us this nice, beautiful sequence represented by each term circled in pink above, 2, 6, 10, 14, 18. That is our recursive sequence, and the answer to our question! Notice in this example, we have an infinite sequence that we can keep finding terms for, but since our question asked for the first 5 terms, we stopped here.

Want another example? For more examples and a step-by-step video on recursive sequences, check out the resources here and below:

Finite Sequence and Series:

Now that we have gone over infinite sequences (Arithmetic, Geometric, Recursive), let’s dive into finite sequence and series!

What’s the difference between a sequence and a series? We know what sequences are, but what is this new word “series” all about? Well, what if we had the first 5 terms of a sequence, but now, we want to add them all together? That is a series, more specifically a finite series since we only want to add the first five terms! Another term you might see that describes a finite sequence is “Partial Sum” or “Partial Sums” because we are summing only part of the sequence.

Finite Arithmetic Series:

A finite arithmetic series happens when we take the terms of an arithmetic sequence and we sum a finite number of them together. Basically, we know that the arithmetic sequence gives us the following terms:

But now we want to sum all these terms together:

How would we be able to find the partial sum of the first 20 terms of an arithmetic sequence? Well, we could sit there and crunch our numbers one by one on a calculator, or we could plug them into the arithmetic finite sequence formula below:

Sn=(n/2)(2a1+(n-1)d)

n=Number of Terms we want to Sum

d=Common Difference

a1=First Term

To find the sum of the first 20 terms of the above sequence, we would need to plug in the following values into our formula to solve. Notice that in this case, the common difference is 2, since each subsequent term is being added by 2.

sequences

For more examples and a step-by-step video on how to find the finite length of a Finite Arithmetic Series, check out the resources here and below:

Finite Geometric Series:

A finite geometric series happens when we take the terms of a geometric sequence, and we sum them together. Basically, we know that the geometric series gives us the following terms:

But now we want to sum all these terms together:

How would we be able to find the partial sums of the first 20 terms of a geometric sequence? Well, we could sit there and crunch our numbers one by one on a calculator, or we could plug them into the formula below:

Sn=a1 (1-rn)/(1-r)

a1=First Term

n=Number of Terms we are Summing together

r=Common Ratio

sequences

For more examples and a step-by-step video on finite sequences and Geometric Series, check out the resources here and below:

Infinite Sequences:

An infinite sequence is one in which the sequence just keeps going and going infinitely with no end. We have already seen examples of this earlier in this post when looking at an arithmetic sequence or geometric sequence. But now, we want to ask ourselves, what would happen if we were to add an entire infinite sequence, by adding together each term within the sequence?

When it comes to adding an infinite arithmetic sequence together, the arithmetic sequence always diverges to infinity. On the other hand, an infinite sequence that is also a geometric sequence, can either diverge to infinity, or converge to a number. If the idea of converging or diverging to infinity, doesn’t make sense yet, that’s ok, keep reading and we’ll go over everything!

Infinite Geometric Series:

An infinite geometric series happens when we take the terms of a geometric sequence, and we sum them together, all of them together, starting with the first term, going all the way to infinity. Basically, we know that the geometric series gives us the following terms:

But now we want to sum all these terms together, from the first term all the way to infinity.

But wait, how do we know if it is even possible to sum together a geometric sequence starting with the first term and adding until infinity? Well, it all depends on divergence vs. convergence. If the common ratio is between -1 and 1, that means that the sum to infinity will converge and we can find the value of the sum of an infinite geometric sequence. If the common ratio has any other value otherwise it will diverge to infinity.

* If you need a review on how to use Summation Notation, check out this link here!

*Also here is a reminder of what a geometric sequence looks like, for anyone who needs it!

sequences

Now, let’s see if the following geometric series converges or diverges:

Since, we know it converges based on the common ratio, we know we can find the value of the infinite sum! Let’s use the formula below:

Sn=a1/(1-r)

a1=First Term

r=Common ratio

Next, let’s plug in our value into the formula:

sequences

For more examples and a step-by-step video on Infinite Geometric Series, check out the resources here and below:

Special Sequences

Fibonacci Sequence – The Most Famous Sequence!

The above sequence, known as the “Fibonacci Sequence,” is the most famous sequence in the world! How can a sequence be so famous? Why is it so special? Well, we’ll get to that in a minute, but before we do, can you see how the Fibonacci Sequence forms a pattern? What would be the next term?

Take your time, trying to figure out the next term of the sequence before taking a peak at the answer below:

Why!? Solution Explained

The next term of the Fibonacci sequence is 21! The pattern of this famous sequence is all about adding the two previous terms together. That’s how we get 1+1=2, 1+2=3, 2+3=5, 3+5=8, 5+8=13, which brings us to get our missing term, 8+13=21. Take a look at how this sequence works below:

Why is the Fibonacci Sequence Famous?

Now that we know the secret pattern behind this sequence, let’s look at why the Fibonacci sequence is so special! The Fibonacci sequence’s main claim to fame is that it is found throughout art, architecture and even in nature via the golden ratio.

The Golden Ratio is a proportion that is considered to be the most pleasing ratio to the human eye! You may also know the Golden Ratio as the golden mean, the divine proportion, phi, or the Greek letter ϕ. It is an infinite and irrational number that approximates to 1.618 and is found by adding two numbers together and then dividing by the larger number and if these same two numbers are then set equal to the larger number divided by the smaller number successfully, then the two numbers are a golden ratio equal to 1.618! If this sounds too confusing to imagine, just take a look at the formula below:

Is it a Golden Ratio?

If the following formula holds true, then yes!

What is amazing about this ratio, is that it can be related back to the Fibonacci Sequence!

The Golden Ration + Fibonacci Sequence:

If we were to take the sequential numbers found within the Fibonacci sequence (1,1,2,3,5..), and plug them into the golden ratio formula above, it would approximate to the golden ratio value, 1.618, the further along in the sequence we go.

The Golden Ratio + Art + Architecture + Nature:

If we were to draw a rectangle that has golden ratio proportions, we would get the golden rectangle below.

Let’s draw a golden rectangle, within our golden rectangle to see what happens:

What happens if we continue this specific pattern and keep drawing in golden rectangles within itself?

Until eventually we get something like this….

The proportion between the width and height of these rectangles is 1.618 and can also be shown as the proportion between any two numbers in the Fibonacci sequence as the sequence approaches infinity.

The above pattern, when all lines are connected form a spiral that can be found within art, architecture, and nature itself! Below we have a picture of the Parthenon, the Mona Lisa, a shell, and the Taj Mahal.

The Golden Ratio + YOU:

Want to know if you yourself has a face that fits the golden ratio?! Try measuring your face horizontally and vertically and plug in those values into the golden ratio formula, dividing the larger number by the smaller number. What did you get? Something close to 1.6 maybe!?

The Golden Ratio + Resources:

If you’re looking to learn more about the Golden Ratio, be sure to check out these resources here.

Donald Duck’s – Mathmagic Land:

Video shows how the golden ratio works and where we can find it! https://www.youtube.com/watch?v=U_ZHsk0-eF0&t=1s

Investopedia + Golden Ratio:

Learn how the Fibonacci Sequence connects to the modern-day stock market! https://www.investopedia.com/articles/technical/04/033104.asp

The Golden Ratio + Mathematics:

Learn where you will see the Golden Ratio in mathematic equations and shapes!
https://www.mathsisfun.com/numbers/golden-ratio.html

Summing Numbers from 1 to 100:

Now that we’ve discussed the most famous sequence, let’s talk about the most well-known sequence, which are just plain old-fashioned natural numbers, starting at 1 and counting to infinity! The sequence we all grew up with and learned to love, yes, natural numbers:

1,2,3,4,5, ….100, …..

What if we were tasked with summing all the numbers from 1 to 100? How would we do that? Well, believe or not, there is a formula to adding all of these numbers together, that was discovered by a famous mathematician named Johann Karl Friedrich Gauss. Apparently, he came up with this pattern after being assigned to add all the numbers from 1 to 100 as an elementary school student! The teacher thinking this would be perfect “busy” work for her class did not see it coming!

How to Sum 1 to 100:

Gauss found a pattern, when adding together the numbers 1 to 100. He looked at the big picture, recognizing that the sum between pairs of numbers from the beginning of the sequence and at the end of the sequence were the same throughout the entire list of numbers! For example, 1+100=101, 2+99=101, 3+98=101, and this pattern continues between all the numbers from 1 to 100! Take a look:

Formula and Solution:

Noticing this pattern, lead Gauss to come up with the following formula to sum every number from 1 to 100:

Above we use the formula to sum every number from 1 to 100 but it can be used to find other sums as well! If you’re wondering where in the world the above formula even came from, try testing it out with a smaller sum, summing numbers from 1 to 10 and see what happens!

Just like we find the sum in an arithmetic or geometric series, we can find the sum of other types of sequences, as we see here with natural numbers! We can even realize that summing numbers 1 to 100 is like summing an arithmetic sequence with a common difference of 1. Hidden patterns and formulas are used to solve all different types of sequences we haven’t even gone over in this post. But let this post guide you with the basics! See if you can find the pattern of any sequences that you find (in this post, in class, or in the street walking around, as sequences are found there too).

If you’re looking for more resources, check out this website that connects Gauss’s Summation formula to arithmetic sequences found in the real world here.

I hope you find this overview of sequences helpful! If there is anything you’d like me to go over more or if you have any questions, please let me know in the comments. Also, please check us out on social media for the latest MathSux videos, lessons, practice, questions, cheat sheets, and more! Happy calculating!

Facebook ~ Twitter ~ TikTok ~ Youtube

Holiday Discount at the Math Shop!

Holiday Discount

Seasons greetings math friends! Tis’ the season of giving, celebrating, and of course, glitter! And in honor of the holiday season, I’m here to take a break from providing math lessons this week, to instead, provide a holiday discount at the Math Shop! Did you know we have an exclusive math shop, just for us MathSux nerds? Check out the one-of-a-kind MathSux merchandise designs located in the Math Shop, found in the link below. Don’t forget to use the discount code, ‘CHEERSMATH‘ for a whopping 20% off! Also, check out my my top 3 favorite picks below for a quick preview of what you’ll find in the store. Does anyone else have nerdy math gear that they use in their lives and in their classroom? Let me know in the comments below!

Holiday Discount:

Math Shop: https://mathsux.creator-spring.com/

Discount: ‘CHEERSMATH

Top 3 Gifts (for the Math Nerd in your Life):

The Math Shop has one-of-a-kind math themed designs on t-shirts, stickers, and posters in a variety of colors for all the math nerds in your life. These items are perfect for math fans, teachers, and students to keep studying the subject light and positive! This can be perfect for those frustrated learning moments, for example, quotes like “Keep Calm and Calculate on” will carry any math learner through to the more enlightened side of math. Although this was hard to do, check out my personal top 3 favorites from the Math Shop:

Holiday Discount

1) Peace, Love, Pi T-Shirt in Pink:

2) MathSux Stickers

3) Keep Calm and Calculate on Stickers

Hoping you’re all having a wonderful holiday season and a Happy New Year! Last but not least, of course I also want to wish you happy calculating! Be back with more math lessons in 2022!

Facebook ~ Twitter ~ TikTok ~ Youtube

Legs of a Right Triangle (when an altitude is drawn)

Greetings math peeps and welcome to another week of MathSux! In todays post we are going to explore how to find the legs of a right triangle when an altitude is drawn from the vertex to its hypotenuse. We are going to take this step by step on how to solve a problem like this. Although, I go over the long way to solve this problem, there is also short cut many people use called the “geometric means” which is also briefly mentioned in this post (under the Tip! section). Whichever method you choose, do what makes most sense to you! Happy calculating!

Similar Right Triangles (with Altitude drawn):

When two triangles have equal angles and proportionate sides, they are similar.  This means they can be different in size (smaller or larger) but if they have the same angles and the sides are in proportion, they are similar! Triangles can be proven similar by AA, SAS, or SSS. For more on similar triangles, check out this post here.

There is a special type of scenario that happens with similar right triangles. When an altitude is drawn from the vertex of a right triangle, it forms two smaller triangles, which creates three right triangles that are similar to the original triangle, based on Angle Angle (AA). Check out the example to see how it works!

In triangle ABC, an altitude is drawn from angle A to its hypotenuse BC. Notice that this creates three 90º right triangles in total (ABC, ABD, and ADC). 

Drawing an altitude created three total right triangles, broken out below:

If you take a closer look, at the triangles above you’ll notice that these two new triangles (ABD and ADC) share an angle with the original bigger triangle ABC and a 90º angle. This makes each of the new triangles similar to the original triangle by AA. We can therefore say that:

How are the New Right Triangles Similar?

1) Triangle ABC ~ ADC

2) Triangle ABC ~ ADB

Ready for an Example?  Lets check out the one below!

Legs of a Right Triangle

Step 1: To find the length of the missing legs of a right triangle, first, let’s separate each right triangle to see what we’re working with, along with the values of each length that was provided.

Legs of a Right Triangle

Step 2: We want to find the length of side AC, so let’s use the triangles whose sides include AC.  This leads us to use triangles ABC and ADC.

Legs of a Right Triangle

Step 3:  Now, let’s set up our proportion to find our missing side.  To make it easier for ourselves let’s first flip and rotate triangle ADC to line up with triangle ABC.

Legs of a Right Triangle
Legs of a Right Triangle

Think you’re ready to try some practice questions on your own? Check out the ones below!

Practice Questions:

Solutions:

Still got questions? No problem! Don’t hesitate to comment with any questions below. Thanks for stopping by and happy calculating!

Facebook ~ Twitter ~ TikTok ~ Youtube

And if you’re looking for more lessons on triangles, check out these related posts below:

Congruent Triangles

Similar Triangles

45 45 90 special triangles

30 60 90 special triangles

Similar Triangles

How to Construct the Altitude of a Triangle with Compass

Sum of Infinite Geometric Sequence

Hey math friends and happy Wednesday! Today we are going to take a look at how to find the sum of infinite geometric sequence (aka series) in summation notation. This may sound complicated, but lucky for us there is an already existing formula that is ready and easy for us to use! So, let’s get to it! Also, don’t forget to check out the video and practice problems below for even more. Happy calculating! 🙂

Looking to review different types of sequences? Check out this post here!

What does it mean to find the “Sum of Infinite Geometric Sequence” (Series)?

We already know what a geometric sequence is: a sequence of numbers that forms a pattern when the same number is multiplied or divided to each term.

Example:

But when what happens if we wanted to sum all the terms of our geometric sequence together?

Example:

We can also write our infinite geometric series using Summation Notation:

How would we calculate that?  That’s where our Infinite Geometric Series formula will come in handy! But before we find a solution, lets take a closer look at what geometric series qualify for this formula.

Divergence Vs. Convergence:

There are two types of Infinite Geometric Series:

Type 1: Infinite Geometric Series that diverges to infinity

Type 2: Infinite Geometric Series that converges to a numeric value (-1 < r < 1)

Check out the differences in the example below:

Infinite Geometric Series Formula:

Note that the below infinite geometric series formula can only be used if the common ratio, r, is less than 1 and greater than -1. If the common ratio, r, is not between -1 and 1, then the sum of the geometric sequence diverges to infinity (and the formula cannot be used).

Now that we have a formula to work with and know when to use it (when -1 < r < 1), let’s take another look at our question and apply our infinite geometric series formula to find a solution:

Sum of Infinite Geometric Sequence

Step 1: First, let’s identify the common ratio to make sure that its between -1 and 1.

Sum of Infinite Geometric Sequence

Step 2: Now that we know we can use our formula, let’s write out each part and identify what numbers we are going to plug in.

Sum of Infinite Geometric Sequence

Step 3: Now let’s fill in our formula and solve with the given values.

Sum of Infinite Geometric Sequence

Practice Questions:

State if each series converges or diverges, then if applicable find the solution.

Sum of Infinite Geometric Sequence

Solutions:

Still got questions? No problem! Don’t hesitate to comment with any questions or check out the video above. Happy calculating! 🙂

*Also, if you want to check out Finite Geometric Series click this link here! And if you want to learn about even more sequences, check out the link here!

Facebook ~ Twitter ~ TikTok ~ Youtube

How to Find Expected Value

Greeting math friends! Today, we are going to dive into statistics by learning how to find the expected value of a discrete random variable. To do this we will need to know all potential numeric outcomes of a “gamble,” as well as be able to repeat the gamble as many time as we want under the same conditions, without knowing what the outcome will be. But I’m getting ahead of myself, all of this will be explained below with two different examples step by step! Don’t forget to check out the video and practice questions at the end of this post to check your understanding. Happy calculating! 🙂

What is Expected Value?

Expected Value is the weighted average of all possible outcomes of one “game” or “gamble” based on the respective probabilities of each potential outcome.

Expected Value Formula: Don’t freak out because below is the expected value formula.

How to Find Expected Value

In essence, we are multiplying each outcome value by the probability of the outcome occurring, and then adding all possibilities together!  Since we are summing all outcome values times their own probabilities, we can re-write the formula in summation notation:

How to Find Expected Value

Does the above formula look insane to you?  Don’t worry because we will go over two examples below that will hopefully clear things up! Let check them out:

Example #1: Expected Value of Flipping a Coin

Step 1:  First let’s write out all the possible outcomes and related probabilities for flipping a fair coin and playing this game.  Making the below table, maps out our Probability Distribution of playing this game.

How to Find Expected Value

Step 2: Now that, we have written out all numeric outcomes and the probability of each occurring, we can fill in our formula and find the Expected Value of playing this game:

How to Find Expected Value

Ready for another?  Let’s see what happens in the next example when rolling a die.

Example #2: Expected Value of Rolling a Die

Step 1:  First let’s write out all the possible outcomes and related probabilities for rolling a die. In this question, we are assuming that each side of the die takes on its numerical value, meaning rolling a 5 or a 6 is worth more than rolling a 1 or 2.  Making the below table, maps out our Probability Distribution of rolling the die.

How to Find Expected Value

Step 2: Now that, we have written out all numeric outcomes and the probability of each occurring, we can fill in our formula and find the Expected Value of playing this game:

How to Find Expected Value

Check out the practice problems below to master your expected value skills!

Practice Questions:

(1) An unfair coin where the probability of getting heads is .4 and the probability of getting tails is .6 is flipped.  In a game where you win $10 on heads, and lose $10 on tails, what is the expected value of playing this game?

(2) An unfair coin where the probability of getting heads is .4 and the probability of getting tails is .6 is flipped.  In a game where you win $30 on heads, and lose $50 on tails, what is the expected value of playing this game?

Solutions:

Still got questions? No problem! Don’t hesitate to comment with any questions below. Thanks for stopping by and happy calculating! 🙂

Facebook ~ Twitter ~ TikTok ~ Youtube

Looking for something similar to Expected Value? Check out the statistics page here!

Why “MathSux”?

Hi Everyone and welcome to MathSux! Today, I wanted to answer a question I get a lot which is why name your Blog and YouTube channel, “MathSux”? Clearly, I love math, but with the name “MathSux” I wanted to show that it can also be hard and even I can think that it suck sometimes. When we don’t understand something it can be frustrating whether its related to math or really anything! The point is we’ve all gotten frustrated when learning something new at some time, but that’s ok, and that’s exactly what MathSux stands for! 🙂

Check out the video below to hear why I chose the name “MathSux” while doodling math art . I hope you enjoy it and happy calculating! 🙂

Why is it called “MathSux”?

*New lessons will be coming your way starting next Wednesday. Also be on the lookout for Regents review questions up on YouTube tomorrow and Friday! 🙂

If you are a teacher or student, have you ever thought math sucked at some time in your life? Let me know in the comments below!

Facebook ~ Twitter ~ TikTok ~ Youtube

And for more “Just for Fun” math posts and videos, click the link here.

Back to School Review: Algebra | Geometry | Algebra 2/Trig.

Back to School Review

Hey math friends and welcome back to MathSux! Back to school season is upon us which means most students (and teachers) will need to review a bit before diving into a completely new subject.  In order to alleviate some of the back to school whoas, I bring to you, this back to school review! Check out the videos below to get the math juices flowing whether you’re new to Algebra, Geometry, or Algebra 2/Trig! I hope you find these videos helpful and wish everyone the best of luck in their first days at school! Happy calculating! 🙂

How to Prepare for Algebra: 

Calling all incoming algebra students, Combining Like Terms is a great place to start! You most likely have combined like terms before, but there’s nothing like sharpening your skills before getting the intense Algebra questions that are coming your way. Check out the video below and try the practice questions here!

Practice Problems: https://mathsux.org/2020/09/30/algebra-combining-like-terms-and-distributive-property/

How to Prepare for Geometry: 

Geometry students, you have the world of shapes ahead of you! It’s an exciting time to review basic Area, Perimeter, Circumference, and Pythagorean Theorem rules before moving ahead with this subject. Review the Pythagorean Theorem below from Khan Academy and check out the last page of the review sheet here to review area and perimeter.

How to Prepare for Algebra 2:

Relieve the fond memories of algebra by reviewing all the different ways to Factor and Solve Quadratic Equations! This is a great way to prepare for rational expressions and the harder algebra 2 problems that are right around the corner.  Check out the video below and related practice questions here to reinforce these hopefully not yet forgotten algebra skills!

Practice Problems: https://mathsux.org/2020/06/09/algebra-4-ways-to-factor-trinomials/
Practice Problems: https://mathsux.org/2016/07/06/algebra-2-factor-by-grouping/

Hope you find this quick review helpful before diving in for the real deal! Besides brushing up on these math topics, what type of new school year routines do like to practice in your classroom or at home? Let me know in the comments and happy calculating! 🙂

Facebook ~ Twitter ~ TikTok ~ Youtube

Olympics Statistics: Top 10 Medals by Country

Olympics Statistics

Greetings and welcome back to MathSux! This week, in honor of the Tokyo Olympics, I will be breaking down some Olympic Statistics. We will look at the top 10 countries that hold the most medals and then look at the top 10 medals earned by country in relation to each country’s total population. Let’s take a look and see what we find! Also, please note that all data used for this analysis was found on the website, here. Anyone else watching the Olympics? Try downloading the data with the link above and see what type of conclusions you can find! Happy Calculating! 🙂

Top 10 Countries: Total Olympic Medals

Below shows the top 10 total medals earned by country from the beginning of the Olympics in 1896 to present day July 2021. As we can see in the graph below, the United States is way ahead of the game with thousands more Olympic medals when compared to any other country in the entire world! I always knew the U.S. did well in the Olympics, but did not realize it was to this magnitude!

Top 10 Countries: Total Olympic Medals Based on Population

Below is a different kind of graph. This percentage rate represents total medals earned over time from 1896 to July 2021 divided by the country’s total population. In this case, we can see that Lichtenstein has earned way more medals based on their small population size when compared to any other country in the world! This is amazing and unexpected!

Remember that all data for the above graphs were made from the following website, here. Are you surprised by the above graphs and conclusions? Try downloading the data on your own and see what you can conclude using your own Olympics Statistics skills! Happy calculating! 🙂

Looking to apply more math to the real world? Check out how to find volume of the Hudson Yards Vessal in NYC here

Facebook ~ Twitter ~ TikTok ~ Youtube

How to Construct a Perpendicular Line through a Point on the Line

Greetings math peeps and welcome to another week of MathSux! In this post, we will learn how to construct a perpendicular line through a point on the line step by step. In the past, we learned how to construct a perpendicular bisector right down the middle of the line, but in this case we will learn how to create a perpendicular line through a given point on the line (which is not always in the middle). Following along with the GIF or check out the vide below. Thanks for stopping by and happy calculating! 🙂

What are Perpendicular Lines ?

  • Lines that intersect to create four 90º angles about the two lines.
How to Construct a Perpendicular Line through a Point on the Line

What is happening in this GIF?

Step 1: First, we are going to gather materials, for this construction we will need a compass, straight edge, and markers.

Step 2: Notice that we need to make a perpendicular line going through point B that is given on our line.

Step 3: Open up our compass to any distance (something preferably short though to fit around our point and on the line).

Step 4: Place the compass end-point on Point B, and draw a semi-circle around our point, making sure to intersect the given line.

Step 5: Open up the compass (any size) and take the point of the compass to the intersection of our semi-circle and given line.  Then swing our compass above the line.

Step 6: Keeping that same length of the compass, go to the other side of our point, where the given line and semi-circle connect.  Swing the compass above the line so it intersects with the arc we made in the previous step.

Step 7: Mark the point of intersection created by these two intersecting arcs we just made and draw a perpendicular line going through Point B!

Best Geometry Tools!

Looking to get the best construction tools? Any compass and straight-edge will do the trick, but personally, I prefer to use my favorite mini math toolbox from Staedler. Stadler has a geometry math set that comes with a mini ruler, compass, protractor, and eraser in a nice travel-sized pack that is perfect for students on the go and for keeping everything organized….did I mention it’s only $7.99 on Amazon?! This is the same set I use for every construction video in this post. Check out the link below and let me know what you think!

Still got questions? No problem! Don’t hesitate to comment with any questions below or check out the video above. Thanks for stopping by and happy calculating! 🙂

Facebook ~ Twitter ~ TikTok ~ Youtube

Want to see how to construct a square inscribed in a circle? Or maybe you want to construct an equilateral triangle? Click on each link to view each construction! And if you’re looking for even more geometry constructions, check out the link here!

Origami and Volume of a Box and Square Base Pyramid

Greetings and happy summer math peeps! In honor of the warm weather and lack of school, I thought we’d have a bit of fun with origami and volume! In this post, we will find the volume of a box and the volume of a square base pyramid. We will also be creating each shape by using origami and following along with the video below. For anyone who wants to follow along with paper folding tutorial, please note that we will need one piece of printer paper that is 8.5″ x 11″and one piece of square origami paper that is 8″ x 8″. If you’re interested in more math and art projects check out this link here. Stay cool and happy calculating! 🙂

Volume of Box (or Rectangular Prism):

To get the volume of our origami box (video tutorial above), we are going to multiply the length times the width times the height. All the values and units of measurement were found by measuring the box we made in inches in the video above with 8.5 x 11 inch computer paper.

Origami and Volume
Origami and Volume

Volume of Square Base Pyramid:

Below is a diagram of the square base pyramid we created via paper folding (watch video tutorial above to follow along!). Please note that if you used a different sized paper (other than 8 X 8 inches), you will get a different value for measurements and for volume.

Origami and Volume
Origami and Volume

For step by step instruction, don’t forget to check out the video above to see how to paper fold a box and square base pyramid. I hope this post made math suck just a little bit less and finding volume a bit more fun. Still got questions or want to learn more about Math+ Art? No problem! Don’t hesitate to comment with any questions below. Thanks for stopping by and happy calculating! 🙂

Facebook ~ Twitter ~ TikTok ~ Youtube

For more Math + Art, check out this post on Perspective Drawing here. And for more Volume + Origami, check out this post on how to find the volume of a cube using origami here and below! If you’re looking for more math and crafts, learn how to make a Mobius Band here!