Geometry: Intersecting Secant Theorem

Ahoy! Today we’re going to cover the Intersecting Secants Theorem!  If you forgot what a secant is in the first place, don’t worry because all it is a line that goes through a circle.  Not so scary right? I was never scared of lines that go through circles before, no reason to start now.

If you have any questions about anything here, don’t hesitate to comment below and check out my video for more of an explanation. Stay positive math peeps and happy calculating! 🙂

Wait, what are Secants?

Screen Shot 2020-07-14 at 10.07.54 PM

Intersecting Secants Theorem: When secants intersect an amazing thing happens! Their line segments are in proportion, meaning we can use something called the Intersecting Secants Theorem to find missing line segments.  Check it out below: 

Screen Shot 2020-07-14 at 10.44.53 PM

Let’s now see how we can apply the intersecting Secants Theorem to find missing length.

Screen Shot 2020-07-14 at 10.45.29 PM.png

Screen Shot 2020-07-14 at 10.10.23 PMScreen Shot 2020-07-14 at 10.10.39 PM.pngScreen Shot 2020-07-14 at 10.11.13 PMScreen Shot 2020-07-14 at 10.11.52 PM.pngScreen Shot 2020-07-14 at 10.13.24 PMScreen Shot 2020-07-14 at 10.13.57 PM.pngScreen Shot 2020-07-14 at 10.14.20 PM

Screen Shot 2020-07-14 at 10.14.41 PM.png

Ready to try the practice problems below on your own!?

Practice Questions: Find the value of the missing line segments x.

Screen Shot 2020-07-14 at 10.38.02 PM

Screen Shot 2020-07-20 at 9.30.01 AM

Solutions:

Screen Shot 2020-07-20 at 9.30.55 AM.png

Still got questions?  No problem! Check out the video above or comment below for any questions and follow for the latest MathSux posts. Happy calculating! 🙂

Facebook ~ Twitter ~ TikTok ~ Youtube

To review a similar NYS Regents question check out this post here

Algebra: Absolute Value Equations

Happy Wednesday math friends! Today, we’re going to go over how to solve absolute value equations.  Solving for absolute value equations supplies us with the magic of two potential answers since absolute value is measured by the distance from zero.  And if this sounds confusing, fear not, because everything is explained below!

Also, if you have any questions about anything here, don’t hesitate to comment. Happy calculating! 🙂

Absolute Value measures the “absolute value” or absolute distance from zero.  For example, the absolute value of 4 is 4 and the absolute value of -4 is also 4.  Take a look at the number line below for a clearer picture:

Screen Shot 2020-07-08 at 2.02.40 PM.png

Now let’s see how we can apply our knowledge of absolute value equations when there is a missing variable!Screen Shot 2020-07-08 at 2.03.07 PMScreen Shot 2020-07-08 at 2.03.46 PM.pngScreen Shot 2020-07-08 at 2.04.00 PMScreen Shot 2020-07-08 at 2.04.26 PM.pngScreen Shot 2020-07-08 at 2.04.56 PM

Screen Shot 2020-07-08 at 2.05.17 PM.png

Screen Shot 2020-07-08 at 2.05.39 PMNow let’s look at a slightly different example:

Screen Shot 2020-07-11 at 4.49.57 PM.pngScreen Shot 2020-07-08 at 2.07.59 PM

Screen Shot 2020-07-08 at 2.07.41 PM.png

Screen Shot 2020-07-08 at 2.08.26 PM.png

Screen Shot 2020-07-08 at 2.08.46 PM

Screen Shot 2020-07-08 at 2.09.33 PMScreen Shot 2020-07-08 at 2.09.58 PM.png Screen Shot 2020-07-08 at 2.10.39 PM.pngScreen Shot 2020-07-08 at 2.10.50 PM

Practice Questions: Given the following right triangles, find the missing lengths and side angles rounding to the nearest whole number.

Screen Shot 2020-07-16 at 9.01.08 AM.png

 

 

 

 

 

Solutions:

Screen Shot 2020-07-08 at 2.12.04 PM

Still got questions?  No problem! Check out the video the same examples outlined above. Happy calculating! 🙂

Facebook ~ Twitter ~ TikTok ~ Youtube

Algebra 2: How to Solve Log Equations

Welcome to Mathsux! Today, we’re going to go over how to solve logarithmic equations, yay! But before we get into finding x, though, we need to go over what logarithms are and why we use them in the first place…..just in case you were curious!

Also, if you have any questions about anything here, don’t hesitate to comment below or shoot me an email.  Happy calculating! 🙂

Logarithms are the inverses of exponential functions.  This means that when graphed, they are symmetrical along the line y=x.  Check it out below!

Screen Shot 2020-06-24 at 9.29.23 PM.png

When on the same set of axis, notice how the functions are symmetrical over the line y=x:

Screen Shot 2020-06-24 at 9.30.16 PM

We use logarithms to find the unknown values of exponents, such as the x value in the equation, Screen Shot 2020-06-24 at 9.30.55 PM.png.  This is a simple example, where we know the value of x is equal to 2,(Screen Shot 2020-06-24 at 9.32.30 PM.png). But what if it were to get more complicated?  That’s where logs come in!

Logarithms follow a swooping pattern that allows us to write it in exponential form, let’s take a look at some Examples below:Screen Shot 2020-06-24 at 9.34.16 PM.pngBut wait there’s more! Logs have a certain set of Rules that makes working with them easier! Check it out below:

Screen Shot 2020-06-24 at 9.35.10 PMWe can use these rules to help us algebraically solve logarithmic equations, let’s look at an example that applies the Product Rule.

Screen Shot 2020-06-24 at 9.36.08 PM.png

Screen Shot 2020-06-24 at 9.36.50 PM

Screen Shot 2020-06-24 at 9.46.07 PM.pngScreen Shot 2020-06-24 at 9.38.32 PM

Try the following practice questions on your own!

Practice Questions:

Screen Shot 2020-06-24 at 9.39.16 PM.png

 

 

 

 

 

 

Solutions:

Screen Shot 2020-06-24 at 9.40.37 PM

Still got questions?  No problem! Check out the video that goes over the same example outlined above.  And for more info. on logarithms check out this post that goes over a NYS Regent’s question here.  Happy calculating! 🙂

Facebook ~ Twitter ~ TikTok ~ Youtube

****Check out this Bonus Video on How to Change Log Bases****

 

 

Algebra: How to Graph y=mx+b

Hi everyone, welcome back to Mathsux! This week we’ll be reviewing how to graph an equation of a line in y=mx+b form. And if you have not checked out the video below, please do! Happy calculating! 🙂

 

Graphing an Equation of Line: An equation of a line can be represented by the formula:Screen Shot 2020-06-17 at 9.07.16 PM

Y-Intercept: This is represented by b, the stand-alone number in y=mx+b. This represents where the line hits the y-axis.  This is always the first point you want to start with when graphing at coordinate point (0,b).

Slope: This is represented by m, the number next to x in y=mx+b. Slope tells us how much we go up or down the y-axis and left or right on the x- axis in fraction form:

Screen Shot 2020-06-17 at 9.09.42 PM

Now let’s check out an Example!

Graph the equation of a line Screen Shot 2020-06-17 at 9.10.42 PM.

Screen Shot 2020-06-17 at 9.12.01 PM

Screen Shot 2020-06-17 at 9.12.35 PM

Screen Shot 2020-06-17 at 9.13.34 PM

Screen Shot 2020-06-17 at 9.14.20 PMTry the following practice questions on your own!

Practice Questions:

Screen Shot 2020-06-17 at 9.15.22 PM

Screen Shot 2020-06-17 at 9.16.21 PM

Want more Mathsux?  Don’t forget to check out our Youtube channel and more below! And if you have any questions, please don’t hesitate to comment below. Happy Calculating! 🙂

Facebook ~ Twitter ~ TikTok ~ Youtube

 

 

Geometry: Perpendicular and Parallel Line Through a Given Point

Happy Wednesday math friends! Today we’re going to go over the difference between perpendicular and parallel lines. Then we’ll use our knowledge of equation of a line (y=mx+b) to see how to find perpendicular and parallel lines through a given point.  This is is a common question that comes up on the NYS Geometry Regents and is something we should prepare for, so let’s go!

If you need any further explanation, don’t hesitate to check out the Youtube video below that goes into detail on how to solve these types of questions one step at a time. Happy calculating! 🙂

Perpendicular lines: Lines that intersect to create a 90-degree angle and can look something like the graph below.  Their slopes are negative reciprocals of each other which means they are flipped and negated. See below for example!Screen Shot 2020-06-10 at 10.26.10 AM

Example: Find an equation of a line that passes through the point (1,3) and is perpendicular to line y=2x+1 .

Screen Shot 2020-06-10 at 10.28.20 AMScreen Shot 2020-06-10 at 10.27.43 AMScreen Shot 2020-06-10 at 10.28.42 AMScreen Shot 2020-06-10 at 10.29.06 AM

Parallel lines are lines that go in the same direction and have the same slope (but have different y-intercepts). Check out the example below!

Screen Shot 2020-06-10 at 10.29.26 AMExample: Find an equation of a line that goes through the point (-5,1) and is parallel to line y=4x+2.Screen Shot 2020-06-10 at 10.34.46 AMScreen Shot 2020-06-10 at 10.35.23 AMTry the following practice questions on your own!

Practice Questions:

1) Find an equation of a line that passes through the point (2,5) and is perpendicular to line y=2x+1.

 2) Find an equation of a line that goes through the point (-2,4) and is perpendicular to lineScreen Shot 2020-06-10 at 11.24.06 AM

 3)  Find an equation of a line that goes through the point (1,6) and is parallel to line y=3x+2.

4)  Find an equation of a line that goes through the point (-2,-2)  and is parallel to line y=2x+1.

Solutions:Screen Shot 2020-06-10 at 11.22.05 AM

Need more of an explanation? Check out the video that goes over these types of questions up on Youtube (video at top of post) and let me know if you have still any questions.

Happy Calculating! 🙂

Facebook ~ Twitter ~ TikTok ~ Youtube

Algebra: 4 Ways to Factor Quadratic Equations

*If you haven’t done so, check out the video that goes over this exact problem, and don’t forget to subscribe!

Screen Shot 2020-06-02 at 3.03.55 PMScreen Shot 2020-06-02 at 3.04.24 PM____________________________________________________________________Screen Shot 2020-06-02 at 3.20.04 PM____________________________________________________________________

Screen Shot 2020-06-02 at 3.07.02 PM____________________________________________________________________
Screen Shot 2020-06-02 at 3.07.42 PM
Choose the factoring method that works best for you and try the practice problems on your own below!

Practice Questions:

Screen Shot 2020-06-02 at 3.09.58 PMSolutions:

Screen Shot 2020-06-02 at 3.10.30 PM

Want a review of all the different factoring methods out there?  Check out the ones left out here (DOTS and GCF) and happy calculating! 🙂

Facebook ~ Twitter ~ TikTok ~ Youtube

Geometry: Median of a Trapezoid Theorem

*If you haven’t done so, check out the video that goes over this exact problem, also please don’t forget to subscribe!

Medians of a Trapezoid copy

Screen Shot 2020-06-02 at 7.31.07 AMStep 1:  Let’s apply the Median of a Trapezoid Theorem to this question!  A little rusty?  No problem, check out the Theorem below.

Median of a Trapezoid Theorem: The median of a trapezoid is equal to the sum of both bases.Screen Shot 2020-06-02 at 7.32.31 AMStep 2: Now that we found the value of x , we can plug it back into the equation for Screen Shot 2020-06-02 at 7.33.44 AMmedian,  to find the value of median Screen Shot 2020-06-02 at 7.34.25 AM

Screen Shot 2020-06-02 at 7.34.48 AM

Want more practice?  Your wish is my command! Check out the practice problems below:

Practice Questions:

1.Screen Shot 2020-06-02 at 7.35.29 AMis the median of trapezoid ABCDEF, find the value of the median, given the following:Screen Shot 2020-06-02 at 7.35.47 AM2. Screen Shot 2020-06-02 at 9.01.08 AMis the median of trapezoid ACTIVE, find the value of the median, given the following:Screen Shot 2020-06-02 at 9.16.22 AM3.Screen Shot 2020-06-02 at 9.17.01 AMis the median of  trapezoid DRAGON, find the value of the median, given the following:Screen Shot 2020-06-02 at 9.22.13 AM

4. Screen Shot 2020-06-02 at 9.23.08 AMis the median of trapezoid MATRIX, find the value of the median, given the following:Screen Shot 2020-06-02 at 9.23.43 AM

Solutions:

Screen Shot 2020-06-02 at 9.25.05 AM

Need more of an explanation?  Check out the detailed video and practice problems. Happy calculating! 🙂

Facebook ~ Twitter ~ TikTok ~ Youtube

Earth Day Fractals!

In honor of Earth Day last week, I thought we’d take a look at some math that appears magically in nature.  Math? In nature?  For those of you who think math is unnatural or just terrible in general, this is a great time to be proven otherwise!

The key that links math to nature is all about PATTERNS. All math is based on is patterns.  This includes all types of math, from sequences to finding x, each mathematical procedure follows some type of pattern. Meanwhile back in the nearest forest, patterns are occurring everywhere in nature.

The rock star of all patterns would have to be FRACTALS. A Fractal is a repeating pattern that is ongoing and has different sizes of the exact same thing!  And the amazing thing is that we can actually find fractals in our neighbor’s local garden.

Let’s look at some Fractal Examples:

(1) Romanesco Broccoli:  Check out those repeating shapes, that have the same repeating shapes on those shapes and the same repeating shapes on even smaller shapes and…. my brain hurts!

Screen Shot 2020-04-26 at 10.18.47 PM                                                          Screen Shot 2020-04-30 at 10.15.34 PM

(2) Fern Leaves:  The largest part of this fractal is the entire fern leaf itself.  The next smaller and identical part is each individual “leaf” along the stem.  If you look closely, the pattern continues!

Screen Shot 2020-04-26 at 10.30.02 PM                                                        Screen Shot 2020-04-30 at 10.16.13 PM

(3) Leaves:  If you’ve ever gotten up real close to any type of leaf, you may have noticed the forever repeating pattern that gets smaller and smaller. Behold the power and fractal pattern of this mighty leaf below!

Screen Shot 2020-04-27 at 3.45.36 PM.                                                        Screen Shot 2020-04-30 at 10.16.55 PM

Just in case fractals are still a bit hard to grasp, check out the most famous Fractal below,  otherwise known as Sierpinski’s Triangle.  This example might not be found in your local back yard, but it’s the best way to see what a fractal truly is up close and infinite and stuff.

sierpinski.gif Screen Shot 2020-04-30 at 10.19.21 PM

Looking for more math in nature?  Check out this post on the Golden Ratio and happy calculating! 🙂

   Facebook   |   Twitter  |