Greetings and welcome back to MathSux! This week, in honor of the Tokyo Olympics, I will be breaking down some Olympic Statistics. We will look at the top 10 countries that hold the most medals and then look at the top 10 medals earned by country in relation to each country’s total population. Let’s take a look and see what we find! Also, please note that all data used for this analysis was found on the website, here. Anyone else watching the Olympics? Try downloading the data with the link above and see what type of conclusions you can find! Happy Calculating! π

Top 10 Countries: Total Olympic Medals

Below shows the top 10 total medals earned by country from the beginning of the Olympics in 1896 to present day July 2021. As we can see in the graph below, the United States is way ahead of the game with thousands more Olympic medals when compared to any other country in the entire world! I always knew the U.S. did well in the Olympics, but did not realize it was to this magnitude!

Top 10 Countries: Total Olympic Medals Based on Population

Below is a different kind of graph. This percentage rate represents total medals earned over time from 1896 to July 2021 divided by the country’s total population. In this case, we can see that Lichtenstein has earned way more medals based on their small population size when compared to any other country in the world! This is amazing and unexpected!

Remember that all data for the above graphs were made from the following website, here. Are you surprised by the above graphs and conclusions? Try downloading the data on your own and see what you can conclude using your own Olympics Statistics skills! Happy calculating! π

Looking to apply more math to the real world? Check out how to find volume of the Hudson Yards Vessal in NYC here.

Greeting math friends and welcome to MathSux! In today’s post we are going to review and take a look at how to use the graphing calculator available by the French company, NumWorks.

In this NumWorks calculator review, first impressions are that this is a serious competitor for Texas Instruments and offers more features than a typical calculator with a focus on statistics, data analysis, and even computer programming! Check out the video below to see the un-boxing, full review, and how to use this calculator step by step. Happy calculating! π

NumWorks Calculator Stand Out Features:

1) TheHome Screen: Works and looks like apps on an iPhone. It is super easy to use, and includes apps such as the regular graphing calculator we’re all used to, as well as, Python, Statistics, Probability, Equation Solver, Sequences, and Regression.

2) The Equation Solver: Punch in any function and find it’s x-values and discriminant! Very cool!

3) Python: Yes, this calculator is programmable via Python! It also includes pre-made scripts that you can easily run. This is great for aspiring programmers and important for today’s economy.

4) Exam Mode: Teachers can make students put their calculators in exam mode and watch their students calculators light up in red to prove there’s no cheating funny business going on! Warning though, this will delete all of your data including the pre-made Python scripts. But you can always hit the reset button in the back to reset.

Did I mention math teacher’s can potentially get a free calculator from NumWorks? Check out the link here!

Has anyone else tried this graphing calculator from NumWorks? What were your first thoughts? Let me know in the comments and happy calculating!

Hi there and welcome to MathSux! In this post, we are going to explore how to calculate z-score and the normal distribution. We’ll do this by examining the normal curve and learning how to find probability finding z-score and using the mean, standard deviation, and specific data points. Fore more info and more MathSix don’t forget to check out the video and practice questions below. Happy calculating!

What is a Normal Curve?

A normal curve is a bell shaped curve that shows the distribution of data evenly spread with respect to the mean. If you look at the normal curve below, the area under the curve shows all the possible probabilities of a certain data point occurring, notice the curve is higher towards the center mean, ΞΌ, and gets smaller as the distance from ΞΌ grows. The distance from ΞΌ is measured by the standard deviation, a unique unit of measurement that is specific to each group of data.

Mean: The mean always falls directly in the center of our normal curve. It is the average of our data, and always falls right in the middle.

Standard Deviation: This value is used as a standard unit of measurement for the data, measuring the distance between each data point in relation to the mean throughout the entire data set. For a review on what standard deviation is and how to calculate it, check out this post here.

Now for our normal curve:

Notice half of the data is below the mean, ΞΌ, while the other half is above? The normal curve is symmetrical about the mean, ΞΌ!

How to Calculate Z-Score?

Z Score can tell us at what percentile a certain point in the data set falls in relation to the rest of the mean by using the standard deviation as a unit of measurement. If this sounds confusing, itβs ok! Take a look at the following formula:

We use the above formula in conjunction with a z table which tells us the probability under the curve for a certain point.

Solution:

a) What percent of student scored below 500?

Step 1: First, letβs draw out our given information the mean=500, standard deviation=100, and the data point the question is asking for x=500 onto a normal curve. Notice that we want to find the value of the area under the curve shaded in pink. This will tell us the percent of students that scored below 500.

Step 2: We need to find the z-score by, using the data point given to us x=500, the mean=500, and the standard deviation, sigma=100.

Step 3: Yes, we have a zero! Now we need to take our z table and line up our chart. Notice that the chart finds the probability for everything at the beginning of the normal curve and on. This is perfect for answering our question!

Step 4: The table gives us our solution of .5000. If we multiply .5000 times 100 it gives us the percent of students who scored below 500 at 50%.

b) What percent of student scored above 620?

Step 1: First, letβs draw out our given information the mean=500, standard deviation=100, and the data point the question is asking for x=620 onto a normal curve. Notice that we want to find the value of the area under the curve shaded in pink. This will tell us the percent of students that scored above 620.

Step 2: We need to find the z-score by, using the data point given to us x=620, the mean=500, and the standard deviation, sigma=100.

Step 3: Yes, we got 1.2! Now we need to take our z table and line up our chart. Notice that the chart finds the probability for everything at the beginning of the normal curve and on. This is means to find the percent we are looking for, we need to subtract our answer from one since we want the value of probability on the right side of the curve (the z-table only provides the left side).

Step 4: The table gives us our solution of .8849. If we subtract this value from 1 then multiply that value times 100 it gives us the percent of students who scored above 620.

C) What is the highest score a student could receive if the students was in the 16.11^{th} percentile?

Step 1: In this question we have to work backwards by first identifying, where on the z-score table is the number .1611 and then filling in our z score formula to find x, the missing data point (in this case test score).

Search the table for .1611:

Notice that .1611 can be found on the z-table above with z-score -0.99. This is what weβll use to find the unknown data point!

Step 2: We need to find the unknown test score by, using the z score we just found z=-0.99, the mean=500, and the standard deviation, sigma=100.

Step 3: Solve for x.

Practice Questions:

The grades on a final English exam are normally distributed with a mean of 75 and a standard deviation of 10.

a) What percent of students scored below a 60?

b) What percent of students scored above an 89?

c) What is the highest possible grade that included in the 4.46^{th} percentile?

d) What percent of students got at least a 77?

Solutions:

a) 6.68%

b) 8.08%

c) 58

d) 42.07%

Want to make math suck just a little bit less? Subscribe to my Youtube channel for free math videos every week! π

Greetings math friends! In this post we’re going to go over variance and standard deviation. We will take this step by step to and explain the significance each have when it comes to a set of data. Get your calculators ready because this step by step although not hard, will take some serious number crunching! Check out the video below to see how to check your work using a calculator and happy calculating! π

What is the Variance?

The variance represents the spread of data or distance each data point is from the mean. When we have multiple observations in our data, we want to know how far each unit of data is from the mean. Are all the data points close together or spread far apart? This is what the variance tells us!

Donβt freak out but hereβs the formula for variance, notated as sigma squared:

This translates to:

Letβs try an example:

What is Standard Deviation?

Standard deviation is a unit of measurement that is unique to each data set and is used to measure the spread of data. The formula for standard deviation happens to be very similar to the variance formula!

Below is the formula for standard deviation, notated as sigma:

Since this is the same exact formula as variance with a square root, all we need to do is take the square root of the variance to find standard deviation:

Now try calculating these statistics on your own with the following practice problems!

Practice Questions:

Solutions:

Still got questions? No problem! Don’t hesitate to comment with any questions or check out the video above. Happy calculating! π