Greetings math friends and welcome to MathSux! In this week’s post, we are going to take a step by step look on how a square inscribed in a circle construction works! We got videos, we got GIF’s, and we got a step by step written explanation below, the choice of learning this construction is up to you! Happy Calculating! 🙂

How to Construct a Square Inscribed in a Circle:

Step 1: Draw a circle using a compass.

Step 2: Using a ruler, draw a diameter across the length of the circle, going through its midpoint.

Step 3: Open up the compass across the circle. Then take the point of the compass to one end of the diameter and swing the compass above the circle, making a mark.

Step 4: Keeping that same length of the compass, go to the other side of the diameter and swing above the circle again making another mark until the two arcs intersect.

Step 5: Repeat steps 3 and 4, this time creating marks below the circle.

Step 6: Connect the point of intersection above and below the circle using a ruler. This creates a perpendicular bisector, cutting the diameter in half and forming 90º angles.

Step 7: Lastly, use a ruler to connect each corner point to one another creating a square.

Still got questions? No problem! Don’t hesitate to comment with any questions. Happy calculating! 🙂

Looking for something similar to square inscribed in a circle construction? Check out this post here on how to construct and equilateral triangle here!

Happy new year and welcome to Math Sux! In this post we are going to dive right into simultaneous equations and how to solve them three different ways! We will go over how to solve simultaneous equations using the (1) Substitution Method (2) Elimination Method and (3) Graphing Method. Each and every method leading us to the same exact answer! At the end of this post don’t forget to try the practice questions choosing the method that best works for you! Happy calculating! 🙂

What are Simultaneous Equations?

Simultaneous Equations are when two equations are graphed on a coordinate plane and they intersect at, at least one point. The coordinate point of intersection for both equation is the answer we are trying to find when solving for simultaneous equations. There are three different methods for finding this answer:

We’re going to go over each method for solving simultaneous equations step by step with the example below:

Method #1: Substitution

The idea behind Substitution, is to solve for 1 variable first algebraically, and the plug this value back into the other equation solving for one variable. Then solving for the remaining variable. If this sounds confusing, don’t worry! We’re going to do this step by step:

Step 1: Let’s choose the first equation and move our terms around to solve for y.

Step 3: The equation is set up and ready to solve for x!

Step 4: All we need to do now, is plug x=3 into one of our original equations to solve for y.

Step 5: Now that we have solved for both x and y, we have officially found where these two simultaneous equations meet!

Method #2: Elimination

The main idea of Elimination is to add our two equations together to cancel out one of the variables, allowing us to solve for the remaining variable. We do this by lining up both equations one on top of the other and adding them together. If variables at first do not easily cancel out, we then multiply one of the equations by a number so it can. Check out how it’s done step by step below!

Step 1: First, let’s stack both equations one on top of the other to see if we can cancel anything out:

Step 2: Our goal is to get a 2 in front of y in the first equation, so we are going to multiply the entire first equation by 2.

Step 3: Now that we multiplied the entire first equation by 2, we can line up our two equations again, adding them together, this time canceling out the variable y to solve for x.

Step 4: Now, that we’ve found the value of variable x=3, we can plug this into one of our equations and solve for missing unknown variable y.

Step 5: Now that we have solved for both x and y, we have officially found where these two simultaneous equations meet!

Method #3: Graphing

The main idea of Graphing is to graph each a equation on a coordinate plane and then see at what point they intersect. This is the best method to visualize and check our answer!

Step 1: Before we start graphing let’s convert each equation into y=mx+b (equation of a line) form.

Equation 1:

Equation 2:

Step 2: Now, let’s graph each line, y=3x-4 and y=-x+8, to see at what coordinate point they intersect.

Need to review how to draw an equation of a line? Check out this post here! Notice we got the same exact answer using all three methods (1) Substitution (2) Elimination and (3) Graphing.

Ready to try the practice problems on your own?! Check them out below!

Practice Questions:

Solve the following simultaneous equations for x and y.

Solutions:

(1, 3)

(4,5)

(-1, -6)

(3, -3)

Want more MathSux? Don’t forget to check out our Youtube channel and more below! And if you have any questions, please don’t hesitate to comment below. Happy Calculating!

Hi everyone and welcome to MathSux! In this post we are going to break down 30 60 90 degree special triangles. What is it? Where did it come from? What are the ratios of it’s side lengths and how to do we use them? You will find all of the answers to these questions below. Also, don’t forget to check out the video below and practice questions at the end of this post. Happy calculating! 🙂

Want to make math suck just a little bit less? Subscribe to my Youtube channel for free math videos every week! 🙂

What is a 30 60 90 Triangle and why is it “Special”?

The 30 60 90 triangle is special because it forms an equilateral triangle when a mirror image of itself is drawn, meaning all sides are equal! This allows us to find the ratio between each side of the triangle by using the Pythagorean theorem. Check it out below!

Now let’s draw a mirror image of our triangle. Next, we can label the length of the new side opposite 30º “a,” and add this new mirror image length with the original we had to get, a+a=2a.

If we look at our original 30 60 90 triangle, we now have the following values for each side based on our equilateral triangle:

Now we can re-label our triangle, knowing the length of the hypotenuse in relation to the two legs. This creates a ratio that applies to all 30 60 90 triangles!

How do I use this ratio?

Knowing the above ratio, allows us to find any length of any and every 30 60 90 triangle, when given the value of one of its sides.

Let’s try an Example:

-> First let’s look at our ratio and compare it to our given triangle.

->Notice we are given the value of a, which equals 4, knowing this we can now fill in each length of our triangle based on the ratio of a 30 60 90 triangle.

Now let’s look at an Example where we are given the length of the hypotenuse and need to find the values of the other two missing sides.

->First let’s look at our ratio and compare it to our given triangle.

-> Notice we are given the value of the hypotenuse, 2a=20. Knowing this we can find the value of a by dividing 20 by 2 to get a=10. Once we have the value of a=10, we can easily find the length of the last leg based on the 30 60 90 ratio:

Now for our last Example, when we are given the side length across from 60º and need to find the other two missing sides.

->First let’s look at our ratio and compare it to our given triangle.

-> In this case, we need to use little algebra to find the value of a, using the ratio for 30 60 90 triangles.

Now that we have one piece of the puzzle, the value of a, let’s fill it in our triangle below:

Finally, let’s find the value of the length of the hypotenuse, which is equal to 2a.

Practice Questions:

Find the value of the missing sides of each 30 60 90 degree triangle.

Solutions:

Still got questions? No problem! Don’t hesitate to comment with any questions or check out the video above. Happy calculating! 🙂

Hi everyone, and welcome to MathSux! In this post we are going to break down how to graph trig functions by identifying its amplitude, frequency, period, and horizontal and vertical phase shifts. Fear not! Because we will breakdown what each of these mean and how to find them, then apply each of these changes step by step on our graph. And if you’re ready for more, check out the video and the practice problems below, happy calculating! 🙂

*For a review on how to derive basic Trig functions (y=sinx, y=cosx, and y=tanx), click here.

What are the Different Parts of a Trig Function?

Amplitude: The distance (or absolute value) between the x-axis and the highest point on the graph.

Frequency: This is the number of cycles that happen between 0 and 2π. (Α “cycle” in this case is the number of “s” cycles for the sine function).

Period: The x-value/length of one cycle. (Α “cycle” in this case is the number of “s” cycles for the sine function). This is found by looking at the graph and seeing where the first cycle ends, or, by using the formula:

Horizontal Shift: When a trigonometric function is moved either left or right along the x-axis.

Vertical Shift: When a trigonometric function is moved either up or down along the y-axis.

Let’s try an Example, graphing a Trig Function step by step.

Step 1: First let’s label and identify all the different parts of our trig function.

Step 2: Now let’s transform our graph one step at a time. First let’s start graphing y=cos(x) without any transformations.

Step 3: Let’s add our amplitude of 2, the distance to the x-axis. To do this our highest and lowest points on the y-axis will now be moved to 2 and -2 respectively.

Step 4: Next, we do a horizontal phase shift to the left by (π/2). To do this, we look at where negative (π/2) is on our graph at (-π/2) and move our entire graph over to start at this new point, “shifting” it to (π/2).

Step 5: For our last transformation, we have a vertical phase shift up 1 unit. All this means is that we are going to shift our entire graph up by 1 unit along the y-axis.

Still got questions? No problem! Don’t hesitate to comment with any questions or check out the video above for an in depth explanation. Happy calculating! 🙂

Hi and welcome to MathSux! In this post, we are going to go over the rules for graphing linear inequalities on a coordinate plane when it comes to drawing lines, circles , and shading, then we are going to solve an example step by step. If you have any questions, check out the video below and try the practice questions at the end of this post! If you still have questions, don’t hesitate to comment below and happy calculating! 🙂

Graphing Linear Inequalities:

When graphing linear inequalities, we always want to treat the inequality as an equation of a line in form y=mx+b….with a few exceptions:

Now that we know the rules, of graphing inequalities, let’s take a look at an Example!

Step 1: First, let’s identify what type of inequality we have here. Since we are working with a > sign, we will need to use a dotted lineand open circles when creating our graph.

Step 2: Now we are going to start graphing our linear inequality as a normal equation of a line, by identifying the slope and the y-intercept only this time keeping open circles in mind. (For a review on how to graph regular equation of a line in y=mx+b form, click here)

Step 3: Now let’s connect our dots, by using a dotted line to represent our greater than sign.

Step 4: Now it is time for us to shade our graph, since this is an inequality, we need to show all of our potential solutions with shading. Since we have a greater than sign, , we will be shading above the y-axis. Notice all the positive y-values above are included to the left of our line. This is where we will shade.

Step 5: Check! Now we need to check our work. To do that, we can choose any point within our shaded region, if the coordinate point we chose hold true when plugged into our inequality then we are correct!

Let’s take the point (-3,2) plugging it into our inequality where x=-3 and y=2.

Practice Questions:

Solutions:

Still got questions? No problem! Don’t hesitate to comment with any questions or check out the video above for an in depth explanation. Happy calculating! 🙂

Hi everyone, and welcome to MathSux! In this post, we are going to go over the Central Angles Theorems of circles. We’ll go over the theorems associated with central angles and then solve a quick example. Make sure to test your understanding of central angles and arcs with the practice questions at the end of this post. And, if you want more, don’t forget to check out the video below, happy calculating!

Central Angles and Arcs:

Central angles and arcs form when two radii are drawn from the center point of a circle. When these two radii come together they form a central angle. A central angle is equal to the length of the arc. When it comes to measuring the central angle, the central angle is always equal to arc length and vice versa:

Central Angles = Arc Length

Central Angle Theorems:

There are a two central angle theorems to know, check them out below!

Central Angle Theorem #1:

Central Angle Theorem #2:

Let’s look at how to apply these rules with an Example:

Let’s do this one step at a time.

Practice Questions:

Solutions:

Still got questions? No problem! Don’t hesitate to comment with any questions or check out the video above. Happy calculating! 🙂

*Also, if you want to check out Intersecting Secants click this link here!

Happy December everyone! With crazy 2020 coming to an end, I thought I would share some TikTok math video compilations of Algebra, Geometry, Algebra 2/Trig, and Statistics for a quick review of all our videos posted throughout the year. Enjoy these TikTok math video compilations and happy calculating! 🙂

Want to make math suck just a little bit less? Subscribe and follow us for FREE fun colorful math videos and lessons every week! 🙂

Within algebra, you will find arithmetic sequences, combining like terms, box and whisker plots, geometric sequences, solving radical equations, completing the square, 4 ways to factor quadratic equations, piecewise functions and more!

Geometry:

Within Geometry, you will find, how to construct an equilateral triangle, a median of a trapezoid, area of a sector, how to find perpendicular and parallel lines through a given point, SOH CAH TOA right triangle trigonometry, reflections, and more!

Algebra 2/Trig.

Within Algebra 2/Trig., you will find, how to expand a cubed binomial, how to divide polynomials, how to solve log equations, imaginary numbers, synthetic division, unit circle basics, how to graph y=sin(x), and more!

Statistics:

Within statistics, you will find, box and whisker plots, how to find the variance, and, the probability of flipping a coin 2 times!

For full length video, don’t forget to check out our free math video index page! Thanks for stopping by! 🙂

Hi everyone and welcome to MathSux! This post is going to help you pass Algebra 2/Trig. In this post, we are going to apply our knowledge of the unit circle and trigonometry and apply it to graphing trig functions y=sin(x), y=cos(x), and y=tan(x). If you have any questions, don’t hesitate to comment or check out the video below. Thanks for stopping by and happy calculating! 🙂

How do we get coordinate points for graphing Trig Functions?

For deriving our trigonometric function graphs [y=sin(x), y=cos(x), and y=tan(x)] we are going to write out our handy dandy Unit Circle. By looking at our unit circle and remembering that coordinate points are in (cos(x), sin(x)) form and that tanx=(sin(x))/(cos(x)) we will be able to derive each and every trig graph!

*Note below is the unit circle we are going to reference to find each value, for an in depth explanation of the unit circle, check out this link here.

How to Graph y=sin(x)?

Step 1: We are going to derive each degree value for sin by looking at the unit circle. These will be our coordinates for graphing y=sin(x). *For a review on how to get these values, check out the link here explaining the unit circle.

Step 2: Now we need to convert all the from degrees to radians. Fear not because this can be done easily with a simple formula!

To convert degrees à radians, just use the formula below:

Step 3: Now that we have our coordinate points and converted degrees to radians, we can draw out our function y=sin(x) on the coordinate plane!

Now we will follow the same process for graphing y=cos(x) and y=tan(x).

How to Graph y=cos(x)?

Step 1: We are going to derive each degree value for cos by looking at the unit circle. These will be our coordinates for graphing y=cos(x). *For a review on how to get these values, check out the link here explaining the unit circle.

Step 2: Now we need to convert all the from degrees to radians.

Step 3: Now that we have our coordinate points and converted degrees to radians, we can draw out our function y=cos(x) on the coordinate plane!

How to Graph y=tan(x)?

Step 1: We are going to derive each degree value for tan by looking at the unit circle. In order to derive values for tan(x), we need to remember that tan(x)=sin(x)/cos(x). Once found, these will be our coordinates for graphing y=tan(x). *For a review on how to get these values, check out the link here explaining the unit circle.

Step 2: Now we need to convert all the from degrees to radians.

Step 3: Now that we have our coordinate points and converted degrees to radians, we can draw out our function y=tan(x) on the coordinate plane!

Still got questions? No problem! Don’t hesitate to comment with any questions or check out the video above for an in depth explanation. Happy calculating! 🙂

Hi everyone and welcome to Mathsux! In this post, we’re going to go over geometric sequences. We’ll see what geometric sequences are, breakdown their formula, and solve two different types of examples. As always if you want more questions, check out the video below and the practice problems at the end of this post. Happy calculating! 🙂

What are Geometric Sequences?

Geometric sequences are a sequence of numbers that form a pattern when the same number is either multiplied or divided to each subsequent term.

Example:

Notice we are multiplying 2 to each term in the sequence above. If the pattern were to continue, the next term of the sequence above would be 64. This is a geometric sequence!

In this sequence it’s easy to see what the next term is, but what if we wanted to know the 15^{th} term? That’s where the Geometric Sequence formula comes in!

Geometric Sequence Formula:

Now that we broke down our geometric sequence formula, let’s try to answer our original question below:

->First, let’s write out the formula:

-> Now let’s fill in our formula and solve with the given values.

Let’s look at another example where, the common ratio is a bit different, and we are dividing the same number from each subsequent term:

-> First let’s identify the common ratio between each number in the sequence. Notice each term in the sequence is being divided by 2 (or multiplied by 1/2 ).

-> Now let’s write out our formula:

-> Next let’s fill in our formula and solve with the given values.

Practice Questions:

Find the 12^{th} term given the following sequence: 1250, 625, 312.5, 156.25, 78.125, ….

Find the 17^{th} term given the following sequence: 3, 9, 27, 81, 243,…..

Find the 10^{th} term given the following sequence: 5000, 1250, 312.5, 78.125 …..

Shirley has $100 that she deposits in the bank. She continues to deposit twice the amount of money every month. How much money will she deposit in the twelfth month at the end of the year?

Solutions:

Still got questions? No problem! Don’t hesitate to comment with any questions or check out the video above. Happy calculating! 🙂

*Also, if you want to check out arithmetic sequences click this link here!

Greetings math friends! In today’s post we’re going to go over some unit circle basics. We will find the value of trigonometric functions by using the unit circle and our knowledge of special triangles. For even more practice questions and detailed info., don’t forget to check out the video and examples at the end of this post. Keep learning and happy calculating! 🙂

What is the Unit Circle?

The Unit Circle is a circle where each point is 1 unit away from the origin (0,0). We use it as a reference to help us find the value of trigonometric functions.

Notice the following things about the unit circle above:

Degrees follow a counter-clockwise pattern from 0 to 360 degrees.

Values of cosine are represented by x-coordinates.

Values of sine are represented by y-coordinates.

Using the unit circle we can find the degree and radian value of trigonometric functions (SOH CAH TOA). Check out the example below!

What’s the big deal with Quadrants?

Within a coordinate plane there are 4 quadrants numbered I, II, III, and IV used throughout all of mathematics. Within these quadrants there are different trigonometric functions that are positive to each unique quadrant. This will be important when solving questions with reference angles later in this post. Check out which trig functions are positive in each quadrant below:

Now let’s look at some examples on how to find trigonometric functions using our circle!

Negative Degree Values:

The unit circle also allows us to find negative degree values which run clockwise, check it out below!

Knowing that negative degrees run clockwise, we can now find the value of trigonometric functions with negative degree values.

How to find trig ratios with 30º, 45º and 60º ?

Instead of memorizing much, much more of the unit circle, there’s a trick to memorizing two simple special triangles for answering these types of questions. The 45º 45º 90º special triangle and the 30º 60º 90º special triangle. (Why does this work? These special triangles can also be derived and found on the unit circle).

Using the above triangles and some basic trigonometry in conjugation with the unit circle, we can find so many more angles, take a look at the example below:

Since we need to find the value of tan(45º) , we will use the 45º, 45º, 90º special triangle.

For our last question, we are going to need to combine our knowledge of unit circles and special triangles:

-> In order to do this, we must first look at where our angle falls on the unit circle. Notice that the angle 135º is encompassed by the pink lines and falls in quadrant 2.

-> Since our angle falls in the second quadrant where only the trig function sin is positive. Since we are finding an angle with the function cosine, we know the solution will be negative.

-> Now we need to find something called a reference angle. Which is what those θ, 180°-θ, θ-180°, 360°-θ and symbols represent towards the center of the unit circle. Using these symbols will help us find the value of cos(135º).

Because the angle we are trying to find,135º , falls in the second quadrant, that means we are going to use the reference angle that falls in that quadrant 180º-θ theta, using the angle we are given as θ.

-> Now we can re-write and solve our trig equations using our newly found reference angle, 45º.

Now we are going to use our 45º 45º 90º special triangle and SOH CAH TOA to evaluate our trig function. For a review on how to use SOH CAH TOA, check out this link here.

When you’re ready, try the problems on your own below!

Practice Questions:

Solve the following trig functions using a unit circle and your knowledge of special triangles:

Solutions:

Still got questions? No problem! Don’t hesitate to comment with any questions or check out the video above for even more examples. Happy calculating! 🙂