Back to School Review: Algebra | Geometry | Algebra 2/Trig.

Back to School Review

Hey math friends and welcome back to MathSux! Back to school season is upon us which means most students (and teachers) will need to review a bit before diving into a completely new subject.  In order to alleviate some of the back to school whoas, I bring to you, this back to school review! Check out the videos below to get the math juices flowing whether you’re new to Algebra, Geometry, or Algebra 2/Trig! I hope you find these videos helpful and wish everyone the best of luck in their first days at school! Happy calculating! 🙂

How to Prepare for Algebra: 

Calling all incoming algebra students, Combining Like Terms is a great place to start! You most likely have combined like terms before, but there’s nothing like sharpening your skills before getting the intense Algebra questions that are coming your way. Check out the video below and try the practice questions here!

Practice Problems: https://mathsux.org/2020/09/30/algebra-combining-like-terms-and-distributive-property/

How to Prepare for Geometry: 

Geometry students, you have the world of shapes ahead of you! It’s an exciting time to review basic Area, Perimeter, Circumference, and Pythagorean Theorem rules before moving ahead with this subject. Review the Pythagorean Theorem below from Khan Academy and check out the last page of the review sheet here to review area and perimeter.

How to Prepare for Algebra 2:

Relieve the fond memories of algebra by reviewing all the different ways to Factor and Solve Quadratic Equations! This is a great way to prepare for rational expressions and the harder algebra 2 problems that are right around the corner.  Check out the video below and related practice questions here to reinforce these hopefully not yet forgotten algebra skills!

Practice Problems: https://mathsux.org/2020/06/09/algebra-4-ways-to-factor-trinomials/
Practice Problems: https://mathsux.org/2016/07/06/algebra-2-factor-by-grouping/

Hope you find this quick review helpful before diving in for the real deal! Besides brushing up on these math topics, what type of new school year routines do like to practice in your classroom or at home? Let me know in the comments and happy calculating! 🙂

Facebook ~ Twitter ~ TikTok ~ Youtube

Olympics Statistics: Top 10 Medals by Country

Olympics Statistics

Greetings and welcome back to MathSux! This week, in honor of the Tokyo Olympics, I will be breaking down some Olympic Statistics. We will look at the top 10 countries that hold the most medals and then look at the top 10 medals earned by country in relation to each country’s total population. Let’s take a look and see what we find! Also, please note that all data used for this analysis was found on the website, here. Anyone else watching the Olympics? Try downloading the data with the link above and see what type of conclusions you can find! Happy Calculating! 🙂

Top 10 Countries: Total Olympic Medals

Below shows the top 10 total medals earned by country from the beginning of the Olympics in 1896 to present day July 2021. As we can see in the graph below, the United States is way ahead of the game with thousands more Olympic medals when compared to any other country in the entire world! I always knew the U.S. did well in the Olympics, but did not realize it was to this magnitude!

Top 10 Countries: Total Olympic Medals Based on Population

Below is a different kind of graph. This percentage rate represents total medals earned over time from 1896 to July 2021 divided by the country’s total population. In this case, we can see that Lichtenstein has earned way more medals based on their small population size when compared to any other country in the world! This is amazing and unexpected!

Remember that all data for the above graphs were made from the following website, here. Are you surprised by the above graphs and conclusions? Try downloading the data on your own and see what you can conclude using your own Olympics Statistics skills! Happy calculating! 🙂

Looking to apply more math to the real world? Check out how to find volume of the Hudson Yards Vessal in NYC here

Facebook ~ Twitter ~ TikTok ~ Youtube

How to Construct a Perpendicular Line through a Point on the Line

Greetings math peeps and welcome to another week of MathSux! In this post, we will learn how to construct a perpendicular line through a point on the line step by step. In the past, we learned how to bisect a line by constructing a perpendicular bisector right down the middle of a line segment, but in this case, we will learn how to create a perpendicular line through a given point on the line (which is not always in the middle). As always, please follow along with the GIF and step-by-step tutorial below or check out the video. Thanks for stopping by and happy calculating! 🙂

What are Perpendicular Lines?

Perpendicular lines are lines that intersect to create four 90º angles (or right angles) about the two line segments. In the example below, line l is perpendicular to line segment AB, which forms a right angle.

Segment Bisector
Line l is perpendicular to line segment AB

Note! When we construct a Perpendicular Bisector, the line we create forms a 90-degree angle and splits the line segment in half. In the construction below, however, we are creating a perpendicular line through a point already on the line segment. Note that the point given to us, will not always be splitting the line into two equal halves the way a segment bisector does. See for yourself below!

How to Construct a Perpendicular Line through a Point on the Line?:

How to Construct a Perpendicular Line through a Point on the Line Segment

What is happening in this GIF?

Step 1: First, notice we are given line segment AC with point B, not in the middle, but along our line. We are going to need a compass and a straightedge or ruler to complete our construction.

Step 2: Our goal is to make a perpendicular line going through point B that is given on our line segment AC.

Step 3: First, let’s open up our compass to any distance (something preferably short enough to fit around our point and on line segment AC).

Step 4: Place the compass end-point on Point B, and draw a semi-circle around our point, making sure to intersect the given line segment.

Step 5: Next, open up the compass at any size and take the point of the compass to the intersection of our semi-circle and given line segment.  Then swing our compass above line segment AC.

Step 6: Keeping that same length of the compass, go to the other side of our point, where the given line and semi-circle connect.  Swing the compass above the line so it intersects with the arc we made in the previous step.

Step 7: Now we can mark the point of intersection created by these two intersecting arcs we just made and draw a perpendicular line using a straight edge going through Point B and we have created our perpendicular line!

Perpendicular Bisector Theorem:

The Perpendicular Bisector Theorem explains that any point along the perpendicular bisector line we just create is equidistant to each end point of the original line segment (in this case line segment AB).

Therefore, if we were to draw points C,D, and E along the perpendicular bisector, then draw imaginary lines stemming from these points to each end point, we’d get something like the image below:

AC = CB

AD = DB

AE = EB

Line Segment Theorem

Constructions and Related Posts:

Looking to construct more than just a perpendicular bisector? Check out these related posts and step-by-step tutorials on geometry constructions below!

Construct an Equilateral Triangle

Bisect a Line Segment with Segment Bisector

Angle Bisector

Construct a 45º angle

Altitudes of a Triangle (Acute, Obtuse, Right)

Construct a Square inscribed in a Circle

Best Geometry Tools!

Looking to get the best construction tools? Any compass and straight-edge will do the trick, but personally, I prefer to use my favorite mini math toolbox from Staedler. Stadler has a geometry math set that comes with a mini ruler, compass, protractor, and eraser in a nice travel-sized pack that is perfect for students on the go and for keeping everything organized….did I mention it’s only $7.99 on Amazon?! This is the same set I use for every construction video in this post. Check out the link below and let me know what you think!

Still got questions? No problem! Don’t hesitate to comment with any questions below or check out the video above. Thanks for stopping by and happy calculating! 🙂

Facebook ~ Twitter ~ TikTok ~ Youtube

Want to see how to construct a square inscribed in a circle? Or maybe you want to construct an equilateral triangle? Click on each link to view each construction! And if you’re looking for even more geometry constructions, check out the link here!

Origami and Volume of a Box and Square Base Pyramid

Greetings and happy summer math peeps! In honor of the warm weather and lack of school, I thought we’d have a bit of fun with origami and volume! In this post, we will find the volume of a box and the volume of a square base pyramid. We will also be creating each shape by using origami and following along with the video below. For anyone who wants to follow along with paper folding tutorial, please note that we will need one piece of printer paper that is 8.5″ x 11″and one piece of square origami paper that is 8″ x 8″. If you’re interested in more math and art projects check out this link here. Stay cool and happy calculating! 🙂

Volume of Box (or Rectangular Prism):

To get the volume of our origami box (video tutorial above), we are going to multiply the length times the width times the height. All the values and units of measurement were found by measuring the box we made in inches in the video above with 8.5 x 11 inch computer paper.

Origami and Volume
Origami and Volume

Volume of Square Base Pyramid:

Below is a diagram of the square base pyramid we created via paper folding (watch video tutorial above to follow along!). Please note that if you used a different sized paper (other than 8 X 8 inches), you will get a different value for measurements and for volume.

Origami and Volume
Origami and Volume

For step by step instruction, don’t forget to check out the video above to see how to paper fold a box and square base pyramid. I hope this post made math suck just a little bit less and finding volume a bit more fun. Still got questions or want to learn more about Math+ Art? No problem! Don’t hesitate to comment with any questions below. Thanks for stopping by and happy calculating! 🙂

Facebook ~ Twitter ~ TikTok ~ Youtube

For more Math + Art, check out this post on Perspective Drawing here. And for more Volume + Origami, check out this post on how to find the volume of a cube using origami here and below! If you’re looking for more math and crafts, learn how to make a Mobius Band here!

The Original Spirograph: Math + Art

Happy Summer everyone! Now that school is out, I thought we could have a bit of fun with Math and Art! In this post, we will go over how to make a the original spirograph (by hand) step by step using a compass and straight edge. Follow along with the video below or check out the tutorial in pictures in this post. Hope everyone is off to a great summer. Happy calculating! 🙂

What is a Spirograph?

The childhood toy we all know and love was invented by Denys Fisher, a British Engineer in the 1960’s.But the method of creating Spirograph patterns was invented way earlier by engineers and mathematicians in the 1800’s.

The Original Spirograph (by hand):

The Original Spirograph

Step 1: Gather materials, for this drawing, we will need a compass and straight edge.

The Original Spirograph

Step 2: Using our compass, we are going to open it to 7 cm and draw a circle.

The Original Spirograph

Step 3: Next, we are going to open the compass to 1cm, making marks all around the circle, keeping that same distance on the compass.

The Original Spirograph

Step 4: Draw a line connecting two points together (any two points some distance apart will do).

The Original Spirograph

Step 5: Now, we are going to move the straight edge forward by one point each and connect the two points with another line.

The Original Spirograph

Step 6: Continue this pattern of moving the ruler forward by one point and connecting them together all the way around.

Step 7: We have completed our Spirograph drawing! Try different sized circles, points around the circle, colors, and points of connections to create different types of patterns and have fun! 🙂

Spirograph Deluxe Art Set:

Want to try the one and only toy spirograph on your own!? Check out this Deluxe Spirograph set that brings mathematics and art together! Let your artistic creativity run free by experimenting with different-sized spirograph tools and colorful pens! Great for kids or math nerd adults, and easily available at Amazon for $23.99. Let me know what you think if you end up getting a spirograph set or if you already have one!

Still got questions or want to learn more about Math+ Art? No problem! Don’t hesitate to comment with any questions below. Thanks for stopping by and happy calculating! 🙂

Facebook ~ Twitter ~ TikTok ~ Youtube

For more Math + Art, check out this post on Perspective Drawing here. And for another math + art project, check out this post on Mobius Bands!

Dilations: Scale Factor & Points Other than Origin

Hi there and welcome to MathSux! Today we are going to break down dilations; what they are, how to find the scale factor, and how to dilate about a point other than the origin. Dilations are a type of transformation that are a bit different when compared to other types of transformations out there (translations, rotations, reflections). Once a shape is dilated, the length, area, and perimeter of the shape change, keep on reading to see how! And if you’re looking for more transformations, check out these posts on reflections and rotations. Thanks so much for stopping by and happy calculating! 🙂

What are Dilations?

Dilations are a type of transformation in geometry where we take a point, line, or shape and make it bigger or smaller, depending on the Scale Factor.

We always multiply the value of the scale factor by the original shape’s length or coordinate point(s) to get the dilated image of the shape. A scale factor greater than one makes a shape bigger, and a scale factor less than one makes a shape smaller. Let’s take a look at how different values of scale factors affect the dilation below:

Scale Factor >1 Bigger

Scale Factor <1 Smaller

Scale Factor=2

 In the below diagram the original triangle ABC gets dilated by a scale factor of 2.  Notice that the triangle gets bigger, and that each length of the original triangle is multiplied by 2.

Dilations

Scale Factor=1/2

Here, the original triangle ABC gets dilated by a scale factor of 1/2.  Notice that the triangle gets smaller, and that each length of the original triangle is multiplied by 1/2 (or divided by 2).

Dilations

Properties of Dilations:

There are few things that happen when a shape and/or line undergoes a dilation.  Let’s take a look at each property of a dilation below:

1. Angle values remain the same.

2. Parallel and perpendicular lines remain the same.

3. Length, area, and perimeter do not remain the same.

Now that we a bit more familiar with how dilations work, let’s look at some examples on the coordinate plane:

Example #1: Finding the Scale Factor

Step 1: First, let’s look at two corresponding sides of our triangle and measure their length.

Dilations

Step 2: Now, let’s look at the difference between the two lengths and ask ourselves, how did we go from 3 units to 1 unit?

Remember, we are always multiplying the scale factor by the original length values in order to dilate an image. Therefore, we know we must have multiplied the original length by 1/3 to get the new length of 1.

Dilations

When it comes to dilations, there are different types of questions we may be faced with.  In the last question, the triangle dilated was done so about the origin, but this won’t always be the case.  Let’s see how to dilate a point about a point other than the origin with this next example.

Example #2: Dilating about a Point other than the Origin

Dilations

Step 1: First, let’s look at our point of dilation, notice it is not at the origin! In this question, we are dilating about point m!  To understand where our triangle is in relation to point m, let’s draw a new x and y axes originating from this point in blue below.

Dilations

Step 2: Now, let’s look at coordinate point K, in relation to our new axes.

Step 3: Let’s use the scale factor of 2 and the transformation rule for dilation, to find the value of its new coordinate point. Remember, in order to perform a dilation, we multiply each coordinate point by the scale factor.

Step 4: Finally, let’s graph the dilated image of coordinate point K. Remember we are graphing the point (6,4) in relation to the x and y-axis that stems from point m.

Dilations

Check out these dilation questions below!

Practice Questions:

1) Plot the image of Point Z under a dilation about the origin by a scale factor of 2.

2) Triangle DEF is the image of triangle ABC after a dilation about the origin. What is the scale factor of the dilation?

Dilations

3) Point L is dilated by a scale factor of 2 about point r. Draw the dilated image of point L.

Dilations

4) Line DE is the dilated image of line AB. What is the scale factor of the dilation?

Solutions:

Still got questions? No problem! Don’t hesitate to comment with any questions below. Thanks for stopping by and happy calculating! 🙂

Facebook ~ Twitter ~ TikTok ~ Youtube

Looking for more Transformations? Check out the related posts below!

Translations

Rotations

Reflections

Algebra 2 Cheat Sheet & Review

Ahoy and welcome math friends! For the latest installment, here is the Algebra 2 Cheat Sheet & Review made just for you to prepare for finals. On this page, you’ll also find links to the come math friends! For the latest installment, here is the Algebra 2 lesson playlist, the NYS Algebra 2 Common Core Regent’s Playlist, and the library of Geometry blog posts. Hope you find these resources helpful as the end of the school year approaches. Good luck on finals and happy calculating! 🙂

Algebra 2 Cheat Sheet:

Download and print the below .pdf for a quick and easy guide of everything you need to know for finals; From formulas to graphs, it’s on here.

Algebra 2 Playlist:

Looking for a more detailed review? Check out the Youtube playlist for Algebra 2 below. It includes every MathSux video related to Algebra 2 and will be sure to help you ace the test!

Algebra 2 Common Core Regents Review:

This playlist is made especially for New York State dwellers as it goes over each and every question of the NYS Common Core Regents. Perfect if you are stuck on that one question! You will surely find the answer here.

Algebra 2 Blog Posts:

For anyone in search of blog posts and practice questions, check out MathSux’s entire Algebra 2 library organized by topic here.

Algebra 2 Cheat Sheet & Review


Still got questions? No problem! Don’t hesitate to comment with any questions below. Also, if you find you need some motivation, check out my 6 tips and tricks for studying math here! Thanks for stopping by and happy calculating! 🙂

Facebook ~ Twitter ~ TikTok ~ Youtube

Get everything you need to know with this Algebra 2 Cheat Sheet and Review! Download and print the pdf for reviewing Algebra 2 or check out the video playlists for a more in-depth review of each topic. If you are living in NYS, you also might want to check out the NYS Regents Common Core Video as needed!

Geometry Cheat Sheet & Review

Greeting math peeps! As promised here is the Geometry Cheat Sheet and Review made just for you to prepare for finals. On this page, you’ll also find links to the Geometry lesson playlist, the NYS Geometry Common Core Regent’s Playlist, and the library of Geometry blog posts. Hope you find these resources helpful as the end of the school year approaches. Good luck on finals and happy calculating! 🙂

Geometry Cheat Sheet:

Download and print the below .pdf for a quick and easy guide of everything you need to know for finals; From formulas to shapes, it’s on here.

Geometry Review Playlist:

Looking for a more detailed review? Check out the Youtube playlist for Geometry below. It includes every MathSux video related to Geometry and will be sure to help you ace the test!

Geometry Common Core Regents Review:

This playlist is made especially for New York State dwellers as it goes over each and every question of the NYS Common Core Regents. Perfect if you are stuck on that one question! You will surely find the answer here.

Geometry Math Lessons for Review:

For anyone in search of blog posts and practice questions, check out MathSux’s entire Geometry library organized by topic here.

Geometry Cheat Sheet & Review

Still got questions? No problem! Don’t hesitate to comment with any questions below. Also, if you find you need some motivation, check out my 6 tips and tricks for studying math here! Thanks for stopping by and happy calculating! 🙂

Facebook ~ Twitter ~ TikTok ~ Youtube

Get everything you need to know with this Geometry Cheat Sheet and Review! Download and print the pdf for reviewing Geometry or check out the video playlists for a more in-depth review of each topic. If you are living in NYS, you also might want to check out the NYS Regents Common Core Video as needed!

Algebra Cheat Sheet & Review

It’s that time of year again, summer is coming, the vacation vibes are calling, but so, unfortunately, are the test cramming and non-stop class reviewing that is coming our way. Nothing like going over topics mentioned at the beginning of the school year to bring us down. How is one supposed to remember everything? Fear not, because I have made a special cheat sheet and review for Algebra, (with Geometry and Algebra 2/Trig. soon to be on the way). I hope you’re staying safe, cool, and calm as the end of the year approaches. Good luck on finals and tests and happy calculating! 🙂

Algebra Cheat Sheet:

Download and print the below .pdf for a quick and easy guide of everything you need to know for finals; From formulas to parabolas, it’s on here.

Algebra Playlist:

Looking for a more detailed review? Check out the Youtube playlist for Algebra below. It includes every MathSux video related to Algebra and will be sure to help you ace the test!

Algebra Common Core Regents Review:

This playlist is made especially for New York State dwellers as it goes over each and every question of the NYS Common Core Regents. Perfect if you are stuck on that one question! You will surely find the answer here.

Algebra Blog Posts:

For anyone in search of blog posts and practice questions, check out MathSux’s entire Algebra library organized by topic here.

Algebra Cheat Sheet & Review

Still got questions? No problem! Don’t hesitate to comment with any questions below. Thanks for stopping by and happy calculating! 🙂

Facebook ~ Twitter ~ TikTok ~ Youtube

Get everything you need to know with this Algebra Cheat Sheet and Review! Download and print the pdf for reviewing Algebra or check out the video playlists for a more in-depth review of each topic. If you are living in NYS, you also might want to check out the NYS Regents Common Core Video as needed!

Finite Arithmetic Sequence

Happy Wednesday math peeps! Today we are going to go over the Finite Arithmetic Sequence; What is the finite arithmetic sequence? How do we use it? And where did it come from? Before going any further though, please make sure you know how arithmetic sequences work before reading onward. If you have any questions, please don’t hesitate to comment below and check out the video and practice questions below. Happy calculating! 🙂

What does it mean to find the “Sum of the Finite Arithmetic Sequence”?

We already know what an arithmetic sequence is: a sequence of numbers that forms a pattern when the same number is added or subtracted to each term. Check out the example below where we are adding the same number, 2 (known as the common difference), to each subsequent term of the sequence.

Example:

common ratio

But what happens now if we wanted to sum the terms of our arithmetic sequence together? Adding 2+4+6+8+……

Example:

Arithmetic Series

More specifically, what if we wanted to find the sum of the first 20 terms of the above arithmetic sequence?  How would we calculate that? Instead of finding the first 20 terms of our sequence and adding them all together, thankfully there is a better way, which is where our Finite Arithmetic Series formula comes in handy!

Finite Arithmetic Series Formula

Why is it called “finite”? Adding the first 20 terms of our arithmetic sequence are considered to be “finite” because the first 20 terms have a definite ending as opposed to a sequence that is infinite and goes on forever. Adding together an infinite series comes with a different formula.

Finite Arithmetic Series Formula:

a1=The first term of our sequence. In this case, we can see that the first term will be the number 2 in the example above. Therefore, we can say a1=2.

an= Value of the last term, in the case mentioned above where we want to find the sum of the first 20 terms, this would be the value of the 20th term.

n= The total number of terms we are trying to sum together. In the example mentioned above, we are trying to sum 20 terms in total, so in this case n=20.

Finite Arithmetic Series Formula

Looking at the above formula, I have to wonder, what happens if we are not given the value of the last term of the sequence for “a sub n”?  What would we do? Do not worry, because there is another way to use this formula if we expand and simplify it, check it out below:

Arithmetic Series Formula: Where did it Come From?

Plug in the arithmetic sequence formula for “a sub n,” then combine like terms.

Let’s take a closer look at what each part of our bonus formula represents below:

Finite Arithmetic Series Formula

Now that we have two formulas to work with, let’s take another look at our question now applying our finite arithmetic series formula:

Step 1: First let’s write out our formula and identify what each part represents and what numbers need to be filled in. Since we are not given the value of the last term, “a sub n” we can use the second bonus formula we previously derived.

Finite Arithmetic Series Formula

Step 2: Now let’s fill in our formula and calculate.

Finite Arithmetic Series Formula

Think you are ready to try some finite arithmetic sequence questions on your own? Test your skills with the following finite arithmetic progression practice examples below:

Practice Questions:

1) Find the sum of the first 15 terms of the following arithmetic sequence:

4, 8, 12, 16, ….

2) Find the sum of the first 24 terms of the following sequence:

2, 7, 12, 17, ….

3) Find the sum of the first 32 terms of the following arithmetic sequence:

100, 97, 94, 91, ….

4) Find the sum of the first 50 terms of the following arithmetic sequence:

5, 7, 9, 11, 13, ….

Solutions:

1) 480

2) 1,428

3) 1,712

4) 2,700

Related Posts:

Looking to learn more about sequences? You’ve come to the right place! Check out these sequence resources and posts below. Personally, I recommend looking at the finite geometric sequence or the infinite geometric series posts next!

Geometric Sequence

Recursive Formula

Arithmetic Sequence

Finite Geometric Series

Infinite Geometric Series

Golden Ratio in the Real World

Fibonacci Sequence

Still, got questions? No problem! Don’t hesitate to comment with any questions below or check out the video above. Thanks so much for stopping by and happy calculating! 🙂

Facebook ~ Twitter ~ TikTok ~ Youtube