Imaginary and Complex Numbers: Algebra 2/Trig.

Happy Wednesday and back to school season math friends! This post introduces imaginary and complex numbers when raised to any power exponent and when multiplied together as a binomial. When it comes to all types of learners, we got you between the video, blog post, and practice problems below. Happy calculating! ๐Ÿ™‚

What are Imaginary Numbers?

Imaginary numbers happen when there is a negative under a radical and looks something like this:

Imaginary and Complex Numbers

Why does this work?

In math, we cannot have a negative under a radical because the number under the square root represents a number times itself, which will always give us a positive number.

Example:

Imaginary and Complex Numbers
complex numbers algebra 2

But wait, thereโ€™s more:

When raised to a power, imaginary numbers can have the following different values:

Imaginary and Complex Numbers

Knowing these rules, we can evaluate imaginary numbers, that are raised to any value exponent! Take a look below:

complex numbers algebra 2

-> We use long division, and divide our exponent value 54, by 4.

Imaginary and Complex Numbers

-> Now take the value of the remainder, which is 2, and replace our original exponent. Then evaluate the new value of the exponent based on our rules.

Imaginary and Complex Numbers

What are Complex Numbers?

Complex numbers combine imaginary numbers and real numbers within one expression in a+bi form. For example, (3+2i) is a complex number. Letโ€™s evaluate a binomial multiplying two complex numbers together and see what happens:

-> There are several ways to multiply these complex numbers together. To make it easy, Iโ€™m going to show the Box method below:

Try mastering imaginary and complex numbers on your own with the questions below!

Practice:

complex numbers algebra 2

Solutions:

complex numbers algebra 2

Still got questions? No problem! Don’t hesitate to comment with any questions or check out the video above. Don’t forget to sign up for FREE weekly MathSux videos, lessons, and practice questions. Thanks for stopping by and happy calculating! ๐Ÿ™‚

Facebook ~ Twitter ~ TikTok ~ Youtube

Also, if you’re looking to learn more about dividing polynomials, check out this post here!

COVID-19: What does #FlattenTheCurve even mean?

COVID-19: What does #FlattenTheCurve even mean? If you are a human on Earth, then I’m sure you’ve heard about the coronavirus and are currently social distancing. Here in NYC, I’m quarantining like everyone else and listening to all the beautiful math language that has suddenly become mainstream (so, exciting)!  #FlattenTheCurve has become NY’s new catchphrase and for anyone confused about what that means, you’ve come to the right place!

The coronavirus spreads at an Exponential Rate, which means it spreads in a way that increases faster and faster every day.

What does this mean?

For Example, one person with the virus can easily spread the virus to 5 other people, those 5 people can then spread the virus to another 5 people each for a total of an extra 25 people, these 25 people can then spread it to another 5 people each for an extra 125 infected people! And the pattern continues……. See below to get a clearer picture:

COVID-19: What does #FlattenTheCurve even mean?
COVID-19: What does #FlattenTheCurve even mean?

.ย  ย *Note: These numbers are not based on actual coronavirus data

The Example we just went over is equal to the exponential equation Screen Shot 2020-04-12 at 1.21.48 PM, but it is only that, an Example! The exact pattern and exponential equation of the future progress of the virus is unknown! We mathematicians, can only measure what has already occurred and prepare/model for the future.  To make the virus spread less rapidly, it is our duty to stay home to slow the rate of this exponentially spreading virus as much as possible.

We want to #FlattenTheCurve a.k.a flatten the increasing exponential curve of new coronavirus cases that appear every day! Hopefully, this post brings some clarity to what’s going on in the world right now.  Even with mathematics, the true outcome of the virus may be unknown, but understanding why we are all at home in the first place and the positive impact it has is also important (and kind of cool).

Stay safe math friends and happy calculating! ๐Ÿ™‚

Want to make math suck just a little bit less? Subscribe and follow us for FREE fun colorful math videos and lessons every week! ๐Ÿ™‚

Facebook ~ Twitter ~ TikTok ~ Youtube

Math Resources (in the time of COVID)

Calling all students, teachers, and parents!ย  As everyone is stuck at home during a global pandemic, now is a great time we are all forced to try and understand math (and our sanity level) a little bit more.ย  Well, I may not be able to help you with the keeping sanity stuff, but as far as math goes, hopefully, the below math resources offer some much needed mathematic support.

All jokes aside I hope everyone is staying safe and successfully social distancing.  Stay well, math friends! ๐Ÿ™‚

Kahn Academy: The same Kahn Academy we know and love still has amazing videos and tutorials as usual, but now they also have a live “homeroom” chat on Facebook LIVE every day at 12:00pm. The chats occur daily with Kahn Academy founder Sal and at times feature famous guests such as Bill Gates. Click the link below for more:

Math Resources

Khan Academy Homeroom 

Study.com: In a time when companies are being more generous, Study.com is here for us as they offer up to 1000 licenses for school districts and free lessons for teachers, students, and parents.  Check out all the education freebies here:

Study.com

Math Resources

Math PlanetIf you’re looking for free math resources in Pre-Algebra, Algebra, Algebra 2, and Geometry then you will find the answers you need at Math Planet.  All free all the time, find their website here:

MathPlanet 

Math Resources

MathSux: Clearly, I had to mention MathSux, the very site you are on right now! Check out free math videos, lesson, practice questions, and more for understanding math any way that works for you!

MathSux

What is your favorite educational site?  Let me know in the comments, and stay well! ๐Ÿ™‚

Rational Exponents: Algebra 2/Trig.

Hi everyone and welcome to MathSux! In this post we are going to break down and solve rational exponents. The words may sound like a mouthful, but all rational exponents are, are fractions as exponents. So instead of having x raised to the second power, such as x2, we might have x raised to the one-half power, such as x(1/2). Let’s try an example taken straight from the NYS Regents below. Also, if you have any questions don’t hesitate to comment below or check out the video posted here. Happy calculating! ๐Ÿ™‚

Screen Shot 2018-12-16 at 2.15.36 PM

How do I answer this question?

The questions want us to simplify the rational exponents into something we can understand.

How do we do this?

We are going to convert the insane looking rational exponents into radical and solve/see if we can simplify further.

Reminder!

A radical can be converted into a rational exponent and vice versa. Not sure what that means? It’s ok! Take a gander at the examples below and look for a pattern:

Rational Exponents:

Think you’re ready to take on our original problem? #Letsdothis

Example:

Screen Shot 2018-12-16 at 2.21.06 PM.png
Rational Exponents:

Practice:

Rational Exponents:

Solutions:

Screen Shot 2018-12-16 at 2.20.42 PM.png

Still got questions?ย  Don’t hesitate to comment below for anything that still isn’t clear! Looking to review how to solve radical equations? Check out this post here! ๐Ÿ™‚

Also, don’t forget to follow MathSux fopr FREE math videos, lessons, practice questions and more every week!

Facebook ~ Twitter ~ TikTok ~ Youtube

Solving Log Equations: Algebra 2/Trig.

Ahoy math friends! In this post, we are going to focus on solving log equations by solving this Regents questions step by step. We’ll answer this question right away! But if you need more of a review, keep reading and you will find what logarithms are, the different kinds of logarithms rules, and some simpler examples. Ready for our first example?! Check it out below:

Screen Shot 2016-06-09 at 8.34.48 PM

How do I Answer this Question?

Step 1: Let’s re-write the equation to get rid of the “log.”

Screen Shot 2016-06-29 at 2.59.16 PM
Solving Log Equations

Step 2: Solve for x in our new equation (5x-1)(1/3)=4

Solving Log Equations

If the above answer makes sense to you, great! If not, that’s ok too, keep reading for a review on solving log equations.

What are Logarithms?

Logarithms are inverses of exponential equations. Take a look below for a clearer picture.

Solving Log Equations

Basic Formula:

Logarithms can be re-written to get rid of the word “log.” This makes them easier to solve and understand.

Solving Log Equations
Solving Log Equations

Log Rules:

There are a few rules you have to memorize get used to with practice. These rules are used when solving for x in different kinds of algebraic log problems:

Solving Log Equations

Still got questions?ย  No problem! Check out the videos below and the post here for more on logarithms! Also don’t forget toย subscribe below to get the latest FREE math videos, lessons, and practice questions from MathSux. Thanks for stopping by and happy calculating! ๐Ÿ™‚

Facebook ~ Twitter ~ TikTok ~ Youtube