Reflections: Geometry

Greetings and welcome to Mathsux! Today we are going to go over reflections, one of the many types of transformations that come up in geometry.  And thankfully, it is one of the easiest transformation types to master, especially if you’re more of a visual learner/artistic type person. So let’s get to it!

What are Reflections?

Reflections on a coordinate plane are exactly what you think! When a point, a line segment, or a shape is reflected over a line it creates a mirror image.  Think the wings of a butterfly, a page being folded in half, or anywhere else where there is perfect symmetry.

Example:

Screen Shot 2020-08-04 at 5.19.40 PM

Step 1: First, let’s draw in line x=-2.

reflections

Step 2: Find the distance each point is from the line x=-2 and reflect it on the other side, measuring the same distance. First, let’s look at point C, notice it’s 1 unit away from the line x=-2, to reflect it we are going to count 1 unit to the left of the line x=-2 and label our new point, C|.

reflections

Step 3: Next we reflect point A in much the same way! Notice that point A is 2 units away on the left of line x=-2, we then measure 2 units to the right of our line and mark our new point, A|.

reflections

Step 4: Lastly, we reflect point B. This time, point B is 1 unit away on the right side of the line x=-2, we then measure 1 unit to the opposite side of our line and mark our new point, B|.

reflections

Step 5: Finally, we can now connect all of our new points, for our fully reflected triangle A|B|C|.

Practice Questions:

reflections

Solutions:

Still got questions?  No problem! Check out the video above or comment below! Happy calculating! 🙂

Facebook ~ Twitter ~ TikTok ~ Youtube

Looking to review rotations about a point? Check out this post here!

Piecewise Functions: Algebra

Greetings, today’s post is for those in need of a piecewise functions review!  This will cover how to graph each part of that oh so intimidating piecewise functions.  There’s x’s, there are commas, there are inequalities, oh my! We’ll figure out what’s going on here and graph each part of the piecewise-function one step at a time.  Then check yourself with the practice questions at the end of this post. Happy calculating! 🙂

piecewise functions

What are Piece-Wise Functions?

Exactly what they sound like! A function that has multiple pieces or parts of a function.  Notice our function below has different pieces/parts to it.  There are different lines within, each with their own domain.

Now let’s look again at how to solve our example, solving step by step:

piecewise functions example
Screen Shot 2020-07-21 at 10.02.41 AM
piecewise functions

Translation: We are going to graph the line f(x)=x+1 for the domain where x > 0

To make sure all our x-values are greater than or equal to zero, we create a table plugging in x-values greater than or equal to zero into the first part of our function, x+1.  Then plot the coordinate points x and y on our graph.

Screen Shot 2020-07-21 at 10.04.33 AM
Screen Shot 2020-07-21 at 10.05.00 AM.png
Screen Shot 2020-07-21 at 10.06.46 AM

Translation: We are going to graph the line  f(x)=x-3 for the domain where x < 0.

To make sure all our x-values are less than zero, let’s create a table plugging in negative x-values values leading up to zero into the second part of our function, x-3.  Then plot the coordinate points x and y on our graph.

piecewise functions
Screen Shot 2020-07-21 at 10.07.57 AM

Ready to try the practice problems below on your own!?

Practice Questions:

Graph each piecewise function:

piecewise functions examples

Solutions:

piecewise functions examples
piecewise functions examples

Still got questions?  No problem! Check out the video above or comment below for any questions. Happy calculating! 🙂

Facebook ~ Twitter ~ TikTok ~ Youtube

***Bonus! Want to test yourself with a similar NYS Regents question on piecewise functions?  Click here.

Intersecting Secants Theorem: Geometry

Ahoy! Today we’re going to cover the Intersecting Secants Theorem!  If you forgot what a secant is in the first place, don’t worry because all it is a line that goes through a circle.  Not so scary right? I was never scared of lines that go through circles before, no reason to start now.

If you have any questions about anything here, don’t hesitate to comment below and check out my video for more of an explanation. Stay positive math peeps and happy calculating! 🙂

Wait, what are Secants?

Screen Shot 2020-07-14 at 10.07.54 PM

Intersecting Secants Theorem: When secants intersect an amazing thing happens! Their line segments are in proportion, meaning we can use something called the Intersecting Secants Theorem to find missing line segments.  Check it out below: 

Intersecting Secants Theorem

Let’s now see how we can apply the intersecting Secants Theorem to find missing length.

Screen Shot 2020-07-14 at 10.45.29 PM.png

Step 1: First, let’s write our formula for Intersecting Secants.

Intersecting Secants Theorem

Step 2: Now fill in our formulas with the given values and simplify.

Intersecting Secants Theorem

Step 3: All we have to do now is solve for x! I use the product.sum method here, but choose the factoring method that best works for you!

Intersecting Secants Theorem

Step 4: Since we have to reject one of our answers, that leaves us with our one and only solution x=2.

Screen Shot 2020-07-14 at 10.14.41 PM.png

Ready to try the practice problems below on your own!?

Practice Questions: Find the value of the missing line segments x.

Intersecting Secants Theorem
Intersecting Secants Theorem

Solutions:

Screen Shot 2020-07-20 at 9.30.55 AM.png

Still got questions?  No problem! Check out the video above or comment below for any questions and follow for the latest MathSux posts. Happy calculating! 🙂

Facebook ~ Twitter ~ TikTok ~ Youtube

To review a similar NYS Regents question check out this post here.

Absolute Value Equations: Algebra

Happy Wednesday math friends! Today, we’re going to go over how to solve absolute value equations.  Solving for absolute value equations supplies us with the magic of two potential answers since absolute value is measured by the distance from zero.  And if this sounds confusing, fear not, because everything is explained below!

Also, if you have any questions about anything here, don’t hesitate to comment. Happy calculating! 🙂

Absolute Value measures the “absolute value” or absolute distance from zero.  For example, the absolute value of 4 is 4 and the absolute value of -4 is also 4.  Take a look at the number line below for a clearer picture:

Absolute Value

Now let’s see how we can apply our knowledge of absolute value equations when there is a missing variable!Absolute Value Equations exampleScreen Shot 2020-07-08 at 2.03.46 PM.pngAbsolute Value EquationsScreen Shot 2020-07-08 at 2.04.26 PM.pngAbsolute Value Equations

Screen Shot 2020-07-08 at 2.05.17 PM.png

Absolute Value EquationsNow let’s look at a slightly different example:

Absolute Value Equations exampleScreen Shot 2020-07-08 at 2.07.59 PM

Absolute Value Equations

Screen Shot 2020-07-08 at 2.08.26 PM.png

Absolute Value Equations

Screen Shot 2020-07-08 at 2.09.33 PMAbsolute Value Equations Screen Shot 2020-07-08 at 2.10.39 PM.pngAbsolute Value Equations

Practice Questions: Given the following right triangles, find the missing lengths and side angles rounding to the nearest whole number.

Absolute Value Equations examples

Solutions:

Absolute Value Equations solutions

Still got questions?  No problem! Check out the video the same examples outlined above. Happy calculating! 🙂

Facebook ~ Twitter ~ TikTok ~ Youtube

Also, if you’re looking for a review on combining like terms and the distributive property, check out this post here.

How to use SOH CAH TOA: Geometry

Welcome back to Mathsux! This week, we’re going to go over how to find missing angles and side lengths of right triangles by using trigonometric ratios (sine, cosine, and tangent) (aka how to use SOH CAH TOA).  Woo hoo! These are the basics of right triangle trigonometry, and provides the base for mastering so many more interesting things in trigonometry! So, let’s get to it!

Also, if you have any questions about anything here, don’t hesitate to comment below or watch the video below. Also, don;r forget to subscribe to Math Sux for FREE math videos, lessons, and practice questions every week. Happy calculating! 🙂

How to use SOH CAH TOA?

Trigonometric Ratios (more commonly known as Sine, Cosine, and Tangent) are ratios that naturally exist within a right triangle.  This means that the sides and angles of a right triangle are in proportion within itself.  It also means that if we are missing a side or an angle, based on what we’re given, we can probably find it!

Let’s take a look at what Sine, Cosine, and Tangent are all about!

How to use SOH CAH TOA
Screen Shot 2020-07-04 at 5.04.02 PM

Now let’s see how we can apply trig ratios when there is a missing side or angle in a right triangle!

Screen Shot 2020-07-04 at 5.17.47 PM
How to use SOH CAH TOA
Screen Shot 2020-07-04 at 5.15.19 PM
How to use SOH CAH TOA
Screen Shot 2020-07-04 at 5.05.01 PM.png
Screen Shot 2020-07-04 at 5.19.13 PM
How to use SOH CAH TOA

Now for another type of question; using trig functions to find missing angles, let’s take a look:

Screen Shot 2020-07-04 at 5.19.51 PM
How to use SOH CAH TOA

Try the following Practice Questions on your own!

How to use SOH CAH TOA

Solutions:

Screen Shot 2020-07-04 at 5.06.37 PM.png

Still got questions?  No problem! Check out the video the same examples outlined above and happy calculating! 🙂

Facebook ~ Twitter ~ TikTok ~ Youtube

Need to brush up on special right triangles? Check out this posts on the 45 45 90 special triangles here!

Perpendicular & Parallel Lines Through a Given Point: Geometry

Happy Wednesday math friends! Today we’re going to go over the difference between perpendicular and parallel lines, then we’ll use our knowledge of the equation of a line (y=mx+b) to see how to find perpendicular and parallel lines through a given point.  This is a common question that comes up on the NYS Geometry Regents and is something we should prepare for, so let’s go!

If you need any further explanation, don’t hesitate to check out the Youtube video below that goes into detail on how to find perpendicular and parallel lines through a given point one step at a time. Happy calculating! 🙂

Perpendicular Lines:

Perpendicular & Parallel Lines Through a Given Point

Perpendicular Lines: Lines that intersect to create a 90-degree angle and can look something like the graph below.  Their slopes are negative reciprocals of each other which means they are flipped and negated. See below for example!

Example: Find an equation of a line that passes through the point (1,3) and is perpendicular to line y=2x+1 .

Screen Shot 2020-06-10 at 10.28.20 AM
Perpendicular & Parallel Lines Through a Given Point
Perpendicular & Parallel Lines Through a Given Point
Screen Shot 2020-06-10 at 10.29.06 AM

Parallel Lines:

Parallel lines are lines that go in the same direction and have the same slope (but have different y-intercepts). Check out the example below!

Perpendicular & Parallel Lines Through a Given Point

Example: Find an equation of a line that goes through the point (-5,1) and is parallel to line y=4x+2.

Screen Shot 2020-06-10 at 10.34.46 AM
Screen Shot 2020-06-10 at 10.35.23 AM

Try the following practice questions on your own!

Practice Questions:

1) Find an equation of a line that passes through the point (2,5) and is perpendicular to line y=2x+1.

 2) Find an equation of a line that goes through the point (-2,4) and is perpendicular to lineScreen Shot 2020-06-10 at 11.24.06 AM

 3)  Find an equation of a line that goes through the point (1,6) and is parallel to line y=3x+2.

4)  Find an equation of a line that goes through the point (-2,-2)  and is parallel to line y=2x+1.

Solutions:

Screen Shot 2020-06-10 at 11.22.05 AM

Need more of an explanation? Check out the video that goes over these types of questions up on Youtube (video at top of post) and let me know if you have still any questions.

Happy Calculating! 🙂

Facebook ~ Twitter ~ TikTok ~ Youtube

Looking for more on Perpendicular and parallel lines? Check out this Regents question on perpendicular lines here!